Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/sigproc_ltfe.html @ 37:a4b7ceae0403 database-connection-manager
Show backtrace on unit test errors
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> <html lang="en"> <head> <meta name="generator" content= "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> <meta http-equiv="Content-Type" content= "text/html; charset=us-ascii"> <title>Log-scale transfer function estimates (LTPDA Toolbox)</title> <link rel="stylesheet" href="docstyle.css" type="text/css"> <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> <meta name="description" content= "Presents an overview of the features, system requirements, and starting the toolbox."> </head> <body> <a name="top_of_page" id="top_of_page"></a> <p style="font-size:1px;"> </p> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr> <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> <td valign="baseline" align="right"><a href= "sigproc_lcohere.html"><img src="b_prev.gif" border="0" align= "bottom" alt="Log-scale cross coherence density estimates"></a> <a href= "sigproc_fit.html"><img src="b_next.gif" border="0" align= "bottom" alt="Fitting Algorithms"></a></td> </tr> </table> <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Log-scale transfer function estimates</h1> <hr> <p> <h2>Description</h2> <p> The LTPDA method <a href="matlab:doc('ao/ltfe')">ao/ltfe</a> estimates the transfer function of time-series signals, included in the input <tt>ao</tt>s following the LPSD algorithm <a href="#references">[1]</a>. Spectral density estimates are not evaluated at frequencies which are linear multiples of the minimum frequency resolution <tt>1/T</tt>, where <tt>T</tt> is the window lenght, but on a logarithmic scale. The algorithm takes care of calculating the frequencies at which to evaluate the spectral estimate, aiming at minimizing the uncertainty in the estimate itself, and to recalculate a suitable window length for each frequency bin. </p> <p> Data are windowed prior to the estimation of the spectrum, by multiplying it with a <a href="specwin.html">spectral window object</a>, and can be detrended by polinomial of time in order to reduce the impact of the border discontinuities. Detrending is performed on each individual window. The user can choose the quantity being given in output among ASD (amplitude spectral density), PSD (power spectral density), AS (amplitude spectrum), and PS (power spectrum). </p> <br> <h2>Syntax</h2> </p> <div class="fragment"><pre> <br> b = ltfe(a1,a2,pl) </pre> </div> <p> <tt>a1</tt> and <tt>a2</tt> are the 2 <tt>ao</tt>s containing the input time series to be evaluated, <tt>b</tt> is the output object and <tt>pl</tt> is an optional parameter list. <h2>Parameters</h2> <p>The parameter list <tt>pl</tt> includes the following parameters:</p> <ul> <li> <tt>'Kdes'</tt> - desired number of averages [default: 100]</li> <li> <tt>'Jdes'</tt> - number of spectral frequencies to compute [default: 1000]</li> <li> <tt>'Lmin'</tt> - minimum segment length [default: 0]</li> <li> <tt>'Win'</tt> - the window to be applied to the data to remove the discontinuities at edges of segments. [default: taken from user prefs].<br> The window is described by a string with its name and, only in the case of Kaiser window, the additional parameter <tt>'psll'</tt>. <br>For instance: plist('Win', 'Kaiser', 'psll', 200). </li> <li> <tt>'Olap'</tt> - segment percent overlap [default: -1, (taken from window function)] </li> <li> <tt>'Order'</tt> - order of segment detrending <ul> <li> -1 - no detrending </li> <li> 0 - subtract mean [default] </li> <li> 1 - subtract linear fit </li> <li> N - subtract fit of polynomial, order N </li> </ul> </li> </ul> The length of the window is set by the value of the parameter <tt>'Nfft'</tt>, so that the window is actually rebuilt using only the key features of the window, i.e. the name and, for Kaiser windows, the PSLL. </p> <p> <table cellspacing="0" class="note" summary="Note" cellpadding="5" border="1"> <tr width="90%"> <td> If the user doesn't specify the value of a given parameter, the default value is used. </td> </tr> </table> </p> </p> <p>The function makes logaritmic frequencyscale transfer functions estimates between the 2 input <tt>ao</tt>s, and the output will contain the transfer function estimate from the first <tt>ao</tt> to the second.</p> </pre> </div> </p> <h2>Algorithm</h2> <p> The algorithm is implemented according to <a href="#references">[1]</a>. The sample variance is computed according to: </p> <div align="center"> <img src="images/tfe_sigma1.png" > </div> where <div align="center"> <img src="images/tfe_sigma2.png" > </div> <br> <p> is the coherence function. In the LPSD algorithm, the first frequencies bins are usually computed using a single segment containing all the data. For these bins, the standard deviation of the mean is set to <tt>Inf</tt>. </p> <h2>Example</h2> <p> Evaluation of the transfer function between two time-series represented by: a low frequency sinewave signal superimposed to white noise, and a low frequency sinewave signal at the same frequency, phase shifted and with different amplitude, superimposed to white noise. </p> <div class="fragment"><pre> <br> <span class="comment">% Parameters</span> nsecs = 1000; fs = 10; nfft = 1000; <span class="comment">% Create input AOs</span> x = ao(plist(<span class="string">'waveform'</span>,<span class="string">'sine wave'</span>,<span class="string">'f'</span>,0.1,<span class="string">'A'</span>,1,<span class="string">'nsecs'</span>,nsecs,<span class="string">'fs'</span>,fs)) + ... ao(plist(<span class="string">'waveform'</span>,<span class="string">'noise'</span>,<span class="string">'type'</span>,<span class="string">'normal'</span>,<span class="string">'nsecs'</span>,nsecs,<span class="string">'fs'</span>,fs)); x.setYunits(<span class="string">'m'</span>); y = ao(plist(<span class="string">'waveform'</span>,<span class="string">'sine wave'</span>,<span class="string">'f'</span>,0.1,<span class="string">'A'</span>,2,<span class="string">'nsecs'</span>,nsecs,<span class="string">'fs'</span>,fs,<span class="string">'phi'</span>,90)) + ... 4*ao(plist(<span class="string">'waveform'</span>,<span class="string">'noise'</span>,<span class="string">'type'</span>,<span class="string">'normal'</span>,<span class="string">'nsecs'</span>,nsecs,<span class="string">'fs'</span>,fs)); y.setYunits(<span class="string">'V'</span>); <span class="comment">% Compute transfer function</span> Txy = ltfe(x,y,plist(<span class="string">'win'</span>,specwin(<span class="string">'Kaiser'</span>,1,200),<span class="string">'nfft'</span>,nfft)); <span class="comment">% Plot</span> iplot(Txy); </pre> </div> <img src="images/l_transfer_1.png" alt="" border="3"> <br> <!-- <img src="images/l_transfer_2.png" alt="" border="3"> <br> --> <h2><a name="references">References</a></h2> <ol> <li> M. Troebs, G. Heinzel, Improved spectrum estimation from digitized time series on a logarithmic frequency axis, <a href="http://dx.doi.org/10.1016/j.measurement.2005.10.010" ><i>Measurement</i>, Vol. 39 (2006), pp. 120 - 129</a>. See also the <a href="http://dx.doi.org/10.1016/j.measurement.2008.04.004" >Corrigendum</a>. </li> </ol> </p> <br> <br> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr valign="top"> <td align="left" width="20"><a href="sigproc_lcohere.html"><img src= "b_prev.gif" border="0" align="bottom" alt= "Log-scale cross coherence density estimates"></a> </td> <td align="left">Log-scale cross coherence density estimates</td> <td> </td> <td align="right">Fitting Algorithms</td> <td align="right" width="20"><a href= "sigproc_fit.html"><img src="b_next.gif" border="0" align= "bottom" alt="Fitting Algorithms"></a></td> </tr> </table><br> <p class="copy">©LTP Team</p> </body> </html>