Mercurial > hg > ltpda
view m-toolbox/classes/@ao/firwhiten.m @ 45:a59cdb8aaf31 database-connection-manager
Merge
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 19:07:22 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% FIRWHITEN whitens the input time-series by building an FIR whitening filter. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: FIRWHITEN whitens the input time-series by building an FIR % whitening filter. The algorithm ultimately uses fir2() to % build the whitening filter. % % ALGORITHM: % 1) Make ASD of time-series % 2) Perform running median to get noise-floor estimate (ao/smoother) % 3) Invert noise-floor estimate % 4) Call mfir() on noise-floor estimate to produce whitening filter % 5) Filter data % % CALL: b = firwhiten(a, pl) % returns whitened time-series AOs % [b, filts] = firwhiten(a, pl) % returns the mfir filters used % [b, filts, nfs] = firwhiten(a, pl) % returns the noise-floor % % estimates as fsdata AOs % % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'firwhiten')">Parameters Description</a> % % VERSION: $Id: firwhiten.m,v 1.29 2011/11/11 15:21:19 luigi Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = firwhiten(varargin) callerIsMethod = utils.helper.callerIsMethod; % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Decide on a deep copy or a modify bs = copy(as, nargout); inhists = copy([as.hist],1); % combine plists pl = parse(pl, getDefaultPlist()); % Extract necessary parameters iNfft = find(pl, 'Nfft'); bw = find(pl, 'bw'); hc = find(pl, 'hc'); swin = find(pl, 'win'); order = find(pl, 'order'); fwin = find(pl, 'FIRwin'); Ntaps = find(pl, 'Ntaps'); % Loop over input AOs filts = []; nfs = []; for j=1:numel(bs) if ~isa(bs(j).data, 'tsdata') warning('!!! %s expects ao/tsdata objects. Skipping AO %s', mfilename, ao_invars{j}); bs(j) = []; else % get Nfft if iNfft < 0 || isempty(iNfft) Nfft = length(bs(j).data.y); else Nfft = iNfft; end utils.helper.msg(msg.PROC1, 'building spectrum'); % Make spectrum axx = psd(bs(j), plist('Nfft', Nfft, 'Win', swin, 'Order', order, 'Scale', 'ASD')); % make noise floor estimate utils.helper.msg(msg.PROC1, 'estimating noise-floor'); nxx = smoother(axx, plist('width', bw, 'hc', hc)); % collect noise-floor estimates for output nfs = [nfs nxx]; % invert and make weights w = 1./nxx; % Make mfir object utils.helper.msg(msg.PROC1, 'building filter'); ff = mfir(w, plist('Win', fwin, 'N', Ntaps)); % collect filters for output filts = [filts ff]; % Filter data utils.helper.msg(msg.PROC1, 'filter data'); filter(bs(j), ff); % Set name bs(j).name = sprintf('firwhiten(%s)', ao_invars{j}); % add history if ~callerIsMethod bs(j).addHistory(getInfo('None'), pl, ao_invars(j), inhists(j)); end % clear errors bs(j).clearErrors; end end % Any errors are meaningless after this process, so clear them on both % axes. bs.clearErrors(plist('axis', 'xy')); % Set outputs if nargout > 0 varargout{1} = bs; end if nargout > 1 varargout{2} = filts; end if nargout > 2 varargout{3} = nfs; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: firwhiten.m,v 1.29 2011/11/11 15:21:19 luigi Exp $', sets, pl); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % Nfft p = param({'Nfft', ['The number of points in the FFT used to estimate<br>'... 'the power spectrum. If unspecified, this is calculated as Ndata/4.']}, paramValue.DOUBLE_VALUE(-1)); pl.append(p); % BW p = param({'bw', ['The bandwidth of the running median filter used to<br>'... 'estimate the noise-floor.']}, {1, {20}, paramValue.OPTIONAL}); pl.append(p); % HC p = param({'hc', 'The cutoff used to reject outliers (0-1).'}, {1, {0.8}, paramValue.OPTIONAL}); pl.append(p); % Win p = param({'Win', 'Spectral window used in spectral estimation.'}, paramValue.WINDOW); pl.append(p); % Order p = param({'Order',['The order of segment detrending:<ul>', ... '<li>-1 - no detrending</li>', ... '<li>0 - subtract mean</li>', ... '<li>1 - subtract linear fit</li>', ... '<li>N - subtract fit of polynomial, order N</li></ul>']}, paramValue.DETREND_ORDER); pl.append(p); % FIR win p = param({'FIRwin', 'The window to use in the filter design.'}, paramValue.WINDOW); pl.append(p); % Ntaps p = param({'Ntaps', 'The length of the FIR filter to build.'}, {1, {256}, paramValue.OPTIONAL}); pl.append(p); end % PARAMETERS: % % 'Ntaps' - the length of the FIR filter to build [default: 256]. % 'FIRwin' - the window to use in the filter design. Pass a % specwin object of the desired type and of any length. % [default: Hanning] % % parameters passed to ltpda_pwelch() % % 'Nfft' - The number of points in the FFT used to estimate % the power spectrum. % [default: Ndata/4] % 'Win' - Spectral window used in spectral estimation. % [default: Kaiser -150dB] % 'Order' - order of segment detrending: % -1 - no detrending % 0 - subtract mean [default] % 1 - subtract linear fit % N - subtract fit of polynomial, order N % % (Segment overlap is taken from the window function.) % % parameters passed to ltpda_nfest() % % 'bw' - The bandwidth of the running median filter used to % estimate the noise-floor. % [default: 20 samples] % 'hc' - The cutoff used to reject outliers (0-1) % [default: 0.8]