Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/psd2tf.m @ 23:a71a40911c27 database-connection-manager
Update check for repository connection parameter in constructors
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% PSD2TF Input power spectral density (psd) and output a stable and minimum % phase transfer function. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: % % Input power spectral density (psd) and output a corresponding % stable function. Identification can be performed for a simple system % (one psd) or for a two dimensional system (the four elements of the % cross-spectral matrix). Continuous or discrete transfer functions are % output in partial fraction expansion: % % Continuous case: % r1 rN % f(s) = ------- + ... + ------- + d % s - p1 s - pN % % Discrete case: % r1 rN % f(z) = ----------- + ... + ----------- + d % 1-p1*z^{-1} 1-pN*z^{-1} % % System identification is performed in frequency domain, the order of % the model function is automatically chosen by the algorithm on the % base of the input tolerance condition. % In the case of simple systems the square root of the psd is fitted % and then the model is stabilized by the application of an all-pass % function. % In the case of two dimensional systems, transfer functions frequency % response is calculated by the eigendecomposition of the % cross-spectral matrix. Then four models are identified with fitting % in frequency domain. If we call these new functions as tf11, tf12, % tf21 and tf22, it can be verified they are connected with the input % spectra by the relation: % % csd11(f) = tf11(f)*conj(tf11(f))+tf12(f)*conj(tf12(f)) % csd12(f) = tf11(f)*conj(tf21(f))+tf12(f)*conj(tf22(f)) % csd21(f) = conj(tf11(f))*tf21(f)+conj(tf12(f))*tf22(f) % csd22(f) = tf21(f)*conj(tf21(f))+tf22(f)*conj(tf22(f)) % % CALL: % % One dimensional system: % [res, poles, dterm] = psd2tf(psd,[],[],[],f,params) % [res, poles, dterm, mresp] = psd2tf(psd,[],[],[],f,params) % [res, poles, dterm, mresp, rdl] = psd2tf(psd,[],[],[],f,params) % % Two dimensional systems: % ostruct = psd2tf(csd11,csd12,csd21,csd22,f,params) % ostruct = psd2tf(csd11,csd12,[],csd22,f,params) % ostruct = psd2tf(csd11,[],csd21,csd22,f,params) % % INPUT: % % - psd is the power spectral density (1dim case) % - csd11, csd12, csd21 and csd22 are the elements of the cross % spectral matrix. If csd12 is left empty, it is calculated as % conj(csd21). If csd21 is left empty, it is calculated as conj(csd12). % (2dim case) % - f: is the corresponding frequencies vector in Hz % - params: is a struct of identification options, the possible values % are: % - params.idtp = 0 s-domain identification --> s-domain output % - params.idtp = 1 z-domain identification --> z-domain output % % params.fullauto = 0 --> Perform a fitting loop as far as the number % of iteration reach Nmaxiter. The order of the fitting function will % be that specified in params.minorder. If params.dterm is setted to % 1 the function will fit only with direct term. % params.fullauto = 1 --> Parform a full automatic search for the % transfer function order. The fitting procedure will stop when the % stopping condition defined in params.ctp is satisfied. Default % value. % % - params.Nmaxiter = # set the maximum number of fitting steps % performed for each trial function order. Default is 50 % % - params.minorder = # set the minimum possible function order. % Default is 2 % % - params.maxorder = # set the maximum possible function order. % Default is 25 % % z-domain % params.spolesopt = 1 --> use real starting poles % params.spolesopt = 2 --> generates complex conjugates poles of the % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+1). % params.spolesopt = 3 --> generates complex conjugates poles of the % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+2). % Default option. % % s-domain % params.spolesopt = 1 --> use real starting poles % params.spolesopt = 2 --> use logspaced complex starting poles. % Default option % params.spolesopt = 3 --> use linspaced complex starting poles % % - params.weightparam = 0 --> use external weights % - params.weightparam = 1 equal weights (one) for each point % - params.weightparam = 2 weight with the inverse of absolute value % of fitting data % - params.weightparam = 3 weight with square root of the inverse of % absolute value of fitting data % - params.weightparam = 4 weight with the inverse of the square mean % spread % % params.extweights = [] --> A vector of externally provided weights. % It has to be of the same size of input data. E.g. % w11,w12,w21,w22 they are assumed to be in spectral units therefore % they are normalized to the values of the input spectrum % % - params.plot = 0 --> no plot during fit iteration % - params.plot = 1 --> plot results at each fitting steps. default % value. % % - params.ctp = 'chival' --> check if the value of the Mean Squared % Error is lower than 10^(-1*lsrcond). % - params.ctp = 'chivar' --> check if the value of the Mean Squared % Error is lower than 10^(-1*lsrcond) and if the relative variation of mean % squared error is lower than 10^(-1*msevar). % - params.ctp = 'lrs' --> check if the log difference between data and % residuals is point by point larger than the value indicated in % lsrcond. This mean that residuals are lsrcond order of magnitudes % lower than data. % - params.ctp = 'lrsmse' --> check if the log difference between data % and residuals is larger than the value indicated in lsrcond and if % the relative variation of mean squared error is lower than % 10^(-1*msevar). % % - params.lrscond = # --> set conditioning value for point to point % log residuals difference (params.ctp = 'lsr') and mean log residual % difference (params.ctp = 'mlsrvar'). Default is 2. See help for % stopfit.m for further remarks. % % - params.msevar = # --> set conditioning value for root mean squared % error variation. This allow to check that the relative variation of % mean squared error is lower than 10^(-1*msevar).Default is 7. See % help for stopfit.m for further remarks. % % - params.fs set the sampling frequency (Hz) useful for z-domain % identification. Default is 1 Hz % % - params.usesym = 0 perform double-precision calculation in the % eigendecomposition procedure to identify 2dim systems and for poles % stabilization % - params.usesym = 1 uses symbolic math toolbox variable precision % arithmetic in the eigendecomposition for 2dim system identification % double-precison for poles stabilization % - params.usesym = 2 uses symbolic math toolbox variable precision % arithmetic in the eigendecomposition for 2dim system identification % and for poles stabilization % % - params.dig = # set the digit precision required for variable % precision arithmetic calculations. Default is 50 % % params.dterm = 0 --> Try to fit without direct term % params.dterm = 1 --> Try to fit with and without direct term % % params.spy = 0 --> Do not display the iteration progression % params.spy = 1 --> Display the iteration progression % % % OUTPUT: % % One Dimensional System % - res is the vector of residues. % - poles is the vector of poles. % - dterm is the direct term (if present). % - mresp is the model frequency response. % - rdl is the vector of residuals calculated as y - mresp. % % Two Dimensional System % - ostruct is a structure array with five fields and four elements. % Element 1 correspond to tf11 data, element 2 to tf12 data, element 3 % to tf21 data and elemnt 4 to tf22 data. % - ostruct(n).res --> is the vector of residues. % - ostruct(n).poles --> is the vector of poles. % - ostruct(n).dterm --> are the tfs direct terms. % - ostruct(n).mresp --> are the tfs models freq. responses. % - ostruct(n).rdl --> are the residuals vectors. % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % VERSION: $Id: psd2tf.m,v 1.19 2010/05/03 18:07:02 luigi Exp $ % % HISTORY: 02-10-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = psd2tf(csd11,csd12,csd21,csd22,f,params) utils.helper.msg(utils.const.msg.MNAME, 'running %s/%s', mfilename('class'), mfilename); % Collect inputs % Default input struct defaultparams = struct('idtp',1, 'Nmaxiter',50, 'minorder',2,... 'maxorder',25, 'spolesopt',2, 'weightparam',1, 'plot',0,... 'ctp','chival','lrscond',2,'msevar',2,... 'fs',1, 'usesym',0, 'dig',50, 'dterm',0, 'spy',0, 'fullauto',1,... 'extweights', []); names = {'idtp','Nmaxiter','minorder','maxorder','spolesopt',... 'weightparam','plot','stopfitcond',... 'ctp','lrscond','msevar',... 'fs','usesym','dig','dterm','spy','fullauto','extweights'}; % collecting input and default params if ~isempty(params) for jj=1:length(names) if isfield(params, names(jj)) && ~isempty(params.(names{1,jj})) defaultparams.(names{1,jj}) = params.(names{1,jj}); end end end % default values for input variables idtp = defaultparams.idtp; % identification type Nmaxiter = defaultparams.Nmaxiter; % Number of max iteration in the fitting loop minorder = defaultparams.minorder; % Minimum model order maxorder = defaultparams.maxorder; % Maximum model order spolesopt = defaultparams.spolesopt; % 0, Fit with no complex starting poles (complex poles can be found as fit output). 1 fit with comples starting poles weightparam = defaultparams.weightparam; % Weight 1./abs(y). Admitted values are 0, 1, 2, 3 checking = defaultparams.plot; % Never polt. Admitted values are 0 (No polt ever), 1 (plot at the end), 2 (plot at each step) ctp = defaultparams.ctp; lrscond = defaultparams.lrscond; msevar = defaultparams.msevar; fs = defaultparams.fs; % sampling frequency usesym = defaultparams.usesym; % method of calculation for the 2dim tfs calculation from psd dig = defaultparams.dig; % number of digits if VPA calculation is required idt = defaultparams.dterm; spy = defaultparams.spy; autosearch = defaultparams.fullauto; extweights = defaultparams.extweights; % rescaling input models to get correct results csd11 = csd11.*(fs/2); csd12 = csd12.*(fs/2); csd21 = csd21.*(fs/2); csd22 = csd22.*(fs/2); % Assign proper values to the control variables for symbolic calculations switch usesym case 0 eigsym = 0; allsym = 0; case 1 eigsym = 1; allsym = 0; case 2 eigsym = 1; allsym = 1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Checking inputs [a,b] = size(csd11); if a < b % shifting to column csd11 = csd11.'; end if isempty(csd12) csd12 = []; else [a,b] = size(csd12); if a < b % shifting to column csd12 = csd12.'; end end if isempty(csd21) csd21 = []; else [a,b] = size(csd21); if a < b % shifting to column csd21 = csd21.'; end end [a,b] = size(csd22); if a < b % shifting to column csd22 = csd22.'; end [a,b] = size(f); if a < b % shifting to column f = f.'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Importing package import utils.math.* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % switching between inputs clear dim % cecking for empty csd or psd2 if all([isempty(csd12) isempty(csd21) isempty(csd22)]) dim = '1dim'; utils.helper.msg(utils.const.msg.PROC1, ' Empty csd12, csd21 and csd22; Performing one dimesional identification on psd ') else dim ='2dim'; utils.helper.msg(utils.const.msg.PROC1, ' Performing two dimesional identification on csd11, csd12, csd21 and csd22 ') end switch dim case '1dim' % switching between continuous and discrete type identification switch idtp case 0 utils.helper.msg(utils.const.msg.PROC1, ' Performing s-domain identification, s-domain output ') itf = abs(sqrt(csd11)); % input data % in case of externally provided weights if ~isempty(extweights) extweights = abs(extweights.*csd11./itf); end % Fitting params params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting absolute TF value with unstable model ') [res,poles,dterm,mresp,rdl,mse] = utils.math.autocfit(itf,f,params); % all pass filtering for poles stabilization if allsym [nr,np,nd,ntf] = utils.math.pfallpsyms(res,poles,dterm,mresp,f); else [ntf,np] = utils.math.pfallps(res,poles,dterm,mresp,f,false); end % Fitting params params = struct('spolesopt',0,'extpoles', np,... 'Nmaxiter',Nmaxiter,'minorder',minorder,'maxorder',maxorder,... 'weightparam',weightparam,'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',1,... 'dterm',idt,'spy',spy,'fullauto',autosearch,... 'extweights',extweights); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF with stable model ') [res,poles,dterm,mresp,rdl,mse] = utils.math.autocfit(ntf,f,params); % Output data switching between output type utils.helper.msg(utils.const.msg.PROC1, ' Output continuous model ') if nargout == 3 varargout{1} = res; varargout{2} = poles; varargout{3} = dterm; elseif nargout == 4 varargout{1} = res; varargout{2} = poles; varargout{3} = dterm; varargout{4} = mresp; elseif nargout == 5 rdl = itf - abs(mresp); % residual respect to original function varargout{1} = res; varargout{2} = poles; varargout{3} = dterm; varargout{4} = mresp; varargout{5} = rdl; else error(' Unespected number of output. Set 3, 4 or 5! ') end case 1 utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification ') itf = abs(sqrt(csd11)); % input data % in case of externally provided weights if ~isempty(extweights) extweights = abs(extweights.*csd11./itf); end % Fitting params params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting absolute TF value with unstable model ') [res,poles,dterm,mresp,rdl,mse] = utils.math.autodfit(itf,f,fs,params); % all pass filtering for poles stabilization if allsym [nr,np,nd,ntf] = utils.math.pfallpsymz(res,poles,dterm,mresp,f,fs); else [ntf,np] = utils.math.pfallpz(res,poles,dterm,mresp,f,fs,false); end % Fitting params params = struct('spolesopt',0,'extpoles', np,... 'Nmaxiter',Nmaxiter,'minorder',minorder,'maxorder',maxorder,... 'weightparam',weightparam,'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',1,... 'dterm',idt,'spy',spy,'fullauto',autosearch,... 'extweights',extweights); utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF with stable model ') [res,poles,dterm,mresp,rdl,mse] = utils.math.autodfit(ntf,f,fs,params); % Output data switching between output type utils.helper.msg(utils.const.msg.PROC1, ' Output z-domain model ') if nargout == 3 varargout{1} = res; varargout{2} = poles; varargout{3} = dterm; elseif nargout == 4 varargout{1} = res; varargout{2} = poles; varargout{3} = dterm; varargout{4} = mresp; elseif nargout == 5 rdl = itf - abs(mresp); % residual respect to original function varargout{1} = res; varargout{2} = poles; varargout{3} = dterm; varargout{4} = mresp; varargout{5} = rdl; else error(' Unespected number of output. Set 3, 4 or 5! ') end end case '2dim' % switching between continuous and discrete type identification switch idtp case 0 utils.helper.msg(utils.const.msg.PROC1, ' Performing s-domain identification on 2dim system, s-domain output ') [tf11,tf12,tf21,tf22] = utils.math.eigcsd(csd11,csd12,csd21,csd22,'USESYM',eigsym,'DIG',dig,'OTP','TF'); % input data % Shifting to columns [a,b] = size(tf11); if a<b tf11 = tf11.'; end [a,b] = size(tf12); if a<b tf12 = tf12.'; end [a,b] = size(tf21); if a<b tf21 = tf21.'; end [a,b] = size(tf22); if a<b tf22 = tf22.'; end % Collecting tfs f1 = [tf11 tf21]; f2 = [tf12 tf22]; % get external weights if ~isempty(extweights) % willing to work with columns [a,b] = size(extweights); if a<b extweights = extweights.'; end wobj1 = [extweights(:,1).*abs(csd11./tf11) extweights(:,3).*abs(csd21./tf21)]; wobj2 = [extweights(:,2).*abs(csd12./tf12) extweights(:,4).*abs(csd22./tf22)]; else wobj1 = []; wobj2 = []; end % Fitting with unstable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Fitting params params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',wobj1); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF11 and TF21 with unstable common poles ') [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autocfit(f1,f,params); params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',wobj2); utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF12 and TF22 with unstable common poles ') [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autocfit(f2,f,params); % Poles stabilization if allsym utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF11 and TF21, symbolic calc... ') [nr1,np1,nd1,nf1] = utils.math.pfallpsyms(res1,poles1,dterm1,mresp1,f); np1 = np1(:,1); utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF12 and TF22, symbolic calc... ') [nr2,np2,nd2,nf2] = utils.math.pfallpsyms(res2,poles2,dterm2,mresp2,f); np2 = np2(:,1); else utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF11 and TF21 ') [nf1,np1] = utils.math.pfallps(res1,poles1,dterm1,mresp1,f,false); np1 = np1(:,1); utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF12 and TF22 ') [nf2,np2] = utils.math.pfallps(res2,poles2,dterm2,mresp2,f,false); np2 = np2(:,1); end % Fitting with stable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Fitting stable TF11 and TF21 with stable poles in s-domain % Fitting params params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... 'minorder',minorder,'maxorder',maxorder,... 'weightparam',weightparam,'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',1,... 'dterm',idt,'spy',spy,'fullauto',autosearch,... 'extweights',wobj1,'extpoles', np1); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF11 and TF21 with stable common poles ') [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autocfit(nf1,f,params); % Fitting stable TF12 and TF22 with stable poles in s-domain % Fitting params params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... 'minorder',minorder,'maxorder',maxorder,... 'weightparam',weightparam,'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',1,... 'dterm',idt,'spy',spy,'fullauto',autosearch,... 'extweights',wobj2,'extpoles', np2); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF12 and TF22 with stable common poles ') [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autocfit(nf2,f,params); % Output stable model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ostruct = struct(); % Data for tf11 ostruct(1).res = res1(:,1); ostruct(1).poles = poles1; ostruct(1).dterm = dterm1(:,1); ostruct(1).mresp = mresp1(:,1); ostruct(1).rdl = rdl1(:,1); % Data for tf12 ostruct(2).res = res2(:,1); ostruct(2).poles = poles2; ostruct(2).dterm = dterm2(:,1); ostruct(2).mresp = mresp2(:,1); ostruct(2).rdl = rdl2(:,1); % Data for tf21 ostruct(3).res = res1(:,2); ostruct(3).poles = poles1; ostruct(3).dterm = dterm1(:,2); ostruct(3).mresp = mresp1(:,2); ostruct(3).rdl = rdl1(:,2); % Data for tf22 ostruct(4).res = res2(:,2); ostruct(4).poles = poles2; ostruct(4).dterm = dterm2(:,2); ostruct(4).mresp = mresp2(:,2); ostruct(4).rdl = rdl2(:,2); % Output data utils.helper.msg(utils.const.msg.PROC1, ' Output continuous models ') if nargout == 1 varargout{1} = ostruct; else error(' Unespected number of output. Set 1! ') end case 1 utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification on 2dim system, z-domain output ') [tf11,tf12,tf21,tf22] = utils.math.eigcsd(csd11,csd12,csd21,csd22,'USESYM',eigsym,'DIG',dig,'OTP','TF'); % input data % Shifting to columns [a,b] = size(tf11); if a<b tf11 = tf11.'; end [a,b] = size(tf12); if a<b tf12 = tf12.'; end [a,b] = size(tf21); if a<b tf21 = tf21.'; end [a,b] = size(tf22); if a<b tf22 = tf22.'; end % Collecting tfs f1 = [tf11 tf21]; f2 = [tf12 tf22]; % get external weights if ~isempty(extweights) % willing to work with columns [a,b] = size(extweights); if a<b extweights = extweights.'; end wobj1 = [extweights(:,1).*abs(csd11./tf11) extweights(:,3).*abs(csd21./tf21)]; wobj2 = [extweights(:,2).*abs(csd12./tf12) extweights(:,4).*abs(csd22./tf22)]; else wobj1 = []; wobj2 = []; end % Fitting with unstable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',wobj1); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF11 and TF21 with unstable common poles ') [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autodfit(f1,f,fs,params); params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',wobj2); utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF12 and TF22 with unstable common poles ') [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autodfit(f2,f,fs,params); % Poles stabilization if allsym utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF11 and TF21, symbolic calc... ') [nr1,np1,nd1,nf1] = utils.math.pfallpsymz(res1,poles1,dterm1,mresp1,f,fs); np1 = np1(:,1); utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF12 and TF22, symbolic calc... ') [nr2,np2,nd2,nf2] = utils.math.pfallpsymz(res2,poles2,dterm2,mresp2,f,fs); np2 = np2(:,1); else utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF11 and TF21 ') [nf1,np1] = utils.math.pfallpz(res1,poles1,dterm1,mresp1,f,fs,false); np1 = np1(:,1); utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF12 and TF22 ') [nf2,np2] = utils.math.pfallpz(res2,poles2,dterm2,mresp2,f,fs,false); np2 = np2(:,1); end % Fitting with stable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Fitting stable TF11 and TF21 with stable poles in z-domain % Fitting params params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... 'minorder',minorder,'maxorder',maxorder,... 'weightparam',weightparam,'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',1,... 'dterm',idt,'spy',spy,'fullauto',autosearch,... 'extweights',wobj1,'extpoles', np1); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF11 and TF21 with stable common poles ') [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autodfit(nf1,f,fs,params); % Fitting stable TF12 and TF22 with stable poles in z-domain % Fitting params params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... 'minorder',minorder,'maxorder',maxorder,... 'weightparam',weightparam,'plot',checking,... 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... 'stabfit',1,... 'dterm',idt,'spy',spy,'fullauto',autosearch,... 'extweights',wobj2,'extpoles', np2); % Fitting utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF12 and TF22 with stable common poles ') [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autodfit(nf2,f,fs,params); % Output stable model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ostruct = struct(); % Data for tf11 ostruct(1).res = res1(:,1); ostruct(1).poles = poles1; ostruct(1).dterm = dterm1(:,1); ostruct(1).mresp = mresp1(:,1); ostruct(1).rdl = rdl1(:,1); % Data for tf12 ostruct(2).res = res2(:,1); ostruct(2).poles = poles2; ostruct(2).dterm = dterm2(:,1); ostruct(2).mresp = mresp2(:,1); ostruct(2).rdl = rdl2(:,1); % Data for tf21 ostruct(3).res = res1(:,2); ostruct(3).poles = poles1; ostruct(3).dterm = dterm1(:,2); ostruct(3).mresp = mresp1(:,2); ostruct(3).rdl = rdl1(:,2); % Data for tf22 ostruct(4).res = res2(:,2); ostruct(4).poles = poles2; ostruct(4).dterm = dterm2(:,2); ostruct(4).mresp = mresp2(:,2); ostruct(4).rdl = rdl2(:,2); % Output data utils.helper.msg(utils.const.msg.PROC1, ' Output discrete models ') if nargout == 1 varargout{1} = ostruct; else error(' Unespected number of output. Set 1! ') end end end % END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%