line source
+ − % MCMC estimates paramters using a Monte Carlo Markov Chain.
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % DESCRIPTION: MCMC estimate the parameters of a given model given
+ − % inputs, outputs and noise using a Metropolis algorithm.
+ − % It handles (1 input / 1 output) systems, (2 input / 1 output) systems,
+ − % and (2 input / 2 output) systems.
+ − %
+ − % CALL: b = mcmc(in,out,pl)
+ − %
+ − % INPUTS: out - analysis objects with measured outputs
+ − %
+ − % pl - parameter list
+ − %
+ − % OUTPUTS: b - pest object contatining estimate information
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('ao', 'mcmc')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: mcmc.m,v 1.24 2011/11/16 15:21:13 nikos Exp $
+ − %
+ − % References: "Catching supermassive black holes binaries without a net"
+ − % N.J. Cornish, E.K. Porter, Phys.Rev.D 75, 021301, 2007
+ − %
+ − % TODO: multiple chain option not implemented yet
+ − % metropolis/hastings not implemented
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − function varargout = mcmc(varargin)
+ −
+ − % Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − import utils.const.*
+ − utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
+ −
+ − % Method can not be used as a modifier
+ − if nargout == 0
+ − error('### mcmc cannot be used as a modifier. Please give an output variable.');
+ − end
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all AOs smodels and plists
+ − [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
+ − pl = utils.helper.collect_objects(varargin(:), 'plist', in_names);
+ −
+ − % Decide on a deep copy or a modify
+ − out = copy(as, nargout);
+ −
+ − % Combine plists
+ − pl = parse(pl, getDefaultPlist);
+ −
+ −
+ − % Get parameters from plist
+ − mtxin = find(pl,'input');
+ − noi = find(pl,'noise');
+ − mdlin = find(pl,'model');
+ −
+ − % Decide on a deep copy or a modify
+ − in = copy(mtxin, nargout);
+ − mdl = copy(mdlin, nargout);
+ −
+ − numexp = numel(in(1,:));
+ − numchannels_in = numel(in(:,1));
+ − numchannels_out = numel(out(:,1));
+ −
+ − if (numel(in) ~= numel(out))
+ − error('### Dimensions of input and output must be equal.');
+ − end
+ −
+ − % Redefining the ao inputs as matrix objects
+ − for ii = 1:numexp
+ − matin(ii) = matrix(in(:,ii),plist('shape',[numchannels_in 1]));
+ − matout(ii) = matrix(out(:,ii),plist('shape',[numchannels_in 1]));
+ − matnoise(ii) = matrix(noi(:,ii),plist('shape',[numchannels_in 1]));
+ − end
+ −
+ − switch class(mdl)
+ − case 'smodel'
+ − matmodel = matrix(mdl);
+ − case 'ssm'
+ − matmodel = mdl;
+ − case 'matrix'
+ − matmodel = mdl;
+ − end
+ −
+ − pl = pset(pl,'model',matmodel,'input',matin,'noise',matnoise);
+ − mcmc_obj = mcmc(matout,pl);
+ −
+ −
+ − % Set output
+ − varargout{1} = mcmc_obj;
+ −
+ − end
+ −
+ −
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − else
+ − sets = {'Default'};
+ − pl = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: mcmc.m,v 1.24 2011/11/16 15:21:13 nikos Exp $', sets, pl);
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function plout = getDefaultPlist()
+ − persistent pl;
+ − if exist('pl', 'var')==0 || isempty(pl)
+ − pl = buildplist();
+ − end
+ − plout = pl;
+ − end
+ −
+ − function pl = buildplist()
+ − pl = plist();
+ −
+ − % N
+ − p = param({'N','number of samples of the chain.'}, paramValue.DOUBLE_VALUE(1000));
+ − pl.append(p);
+ −
+ − % Sigma
+ − p = param({'cov','covariance of the gaussian jumping distribution.'}, paramValue.DOUBLE_VALUE(1e-4));
+ − pl.append(p);
+ −
+ − % Param
+ − p = param({'Fitparams','A cell array of evaluated parameters.'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − % Input
+ − p = param({'input','A matrix array of input signals.'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − % Frequencies
+ − p = param({'frequencies','Range of frequencies where the analysis is performed. If an array, only first and last are used'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − % Noise
+ − p = param({'noise','An array of noise spectrum (PSD) used to compute the likelihood.<ul>', ...
+ − '<li>1 channel - Input one object</li>', ...
+ − '<li>2 channel - Input four objects defining the power spectrum matrix </li>',...
+ − '</ul>'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − % Model
+ − p = param({'model','An array of models.',...
+ − '<li>1 input / 1 output - Input one object</li>', ...
+ − '<li>2 input / 1 output - Input two objects</li>', ...
+ − '<li>2 channel (2 input/ 2 output) - Input four objects defining the transfer function matrix </li>',...
+ − '</ul>'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − % Search
+ − p = param({'search','Set to true to use bigger jumps in parameter space during annealing and cool down.'}, paramValue.TRUE_FALSE);
+ − pl.append(p);
+ −
+ − % Simplex
+ − p = param({'simplex','Set to true to perform a simplex search to find the starting parameters of the MCMC chain.'}, paramValue.TRUE_FALSE);
+ − pl.append(p);
+ −
+ − % heat
+ − p = param({'heat','The heat index flattening likelihood surface during annealing.'}, paramValue.DOUBLE_VALUE(1));
+ − pl.append(p);
+ −
+ − % Tc
+ − p = param({'Tc','An array of two values setting the initial and final value for the cooling down.'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − % x0
+ − p = param({'x0','The proposed initial values.'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − % jumps
+ − p = param({'jumps','An array of four numbers setting the rescaling of the covariance matrix during the search phase.',...
+ − 'The first value is the one applied by default, the following thhree apply just when the chain sample is',...
+ − 'mod(10), mod(25) and mod(100) respectively.'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − % plot
+ − p = param({'plot','Select indexes of the parameters to be plotted.'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − % debug
+ − p = param({'debug','Set to true to get debug information of the MCMC process.'}, paramValue.FALSE_TRUE);
+ − pl.append(p);
+ −
+ − p = param({'prior','Mean, sigma and normalization factor for priors. Still under test'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − p = param({'anneal',['Choose type of annealing during sampling. Default value is ',...
+ − 'simulated annealing. Choose "thermo" for annealing with a thermostat.',...
+ − ' SNR is computed and if it is larger than a fixed value SNR0 (provided also in the plist), ',...
+ − 'then the chains are heated by a factor of (SNR(1)/SNR0)^2. Choosing "simple" ',...
+ − 'the deviation of the loglikelihood of every 10 points in the chains is stored. If this deviation ',...
+ − 'is larger or smaller than two fixed values the chains are cooled or heated respectively.']}, {1, {'simul','thermo', 'simple'}, paramValue.SINGLE});
+ − pl.append(p);
+ −
+ − p = param({'SNR0','Fixed value for thermostated annealing.'}, {1, {200}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − p = param({'DeltaL',['Deviation of Loglikelihood for 10 points of the chains. Used for',...
+ − 'the "simple" choice of annealing with a thermostat.']}, {1, {[100 600 2 3]}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − end
+ −
+ −
+ − % PARAMETERS: J - number of chains to compute.
+ − % sigma - dispersion of the jumping distribution.
+ − % range - range where the parameteters are sampled.
+ − % param - a cell array of evaluated parameters (from the
+ − % smodel).
+ − % Tc - an array with two values (default: 0, i.e. no annealing).
+ − % heat - heat index flattening likelihood surface (default: 1)
+ − % x0 - proposed initial values, if empty selected randomly.
+ − % (default: empty)
+ −
+ −