Mercurial > hg > ltpda
view m-toolbox/classes/@ao/tdfit.m @ 23:a71a40911c27 database-connection-manager
Update check for repository connection parameter in constructors
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% TDFIT fit a set of smodels to a set of input and output signals.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: TDFIT fit a set of smodels to a set of input and output signals. % % % CALL: b = tdfit(outputs, pl) % % INPUTS: outputs - the AOs representing the outputs of a system. % pl - parameter list (see below) % % OUTPUTs: b - a pest object containing the best-fit parameters, % goodness-of-fit reduced chi-squared, fit degree-of-freedom % covariance matrix and uncertainties. Additional % quantities, like the Information Matrix, are contained % within the procinfo. The best-fit model can be evaluated % from pest\eval. % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'tdfit')">Parameters Description</a> % % EXAMPLES: % % % 1) Sine-wave stimulus of a simple system % % % Sine-wave data % data = ao(plist('tsfcn', 'sin(2*pi*3*t) + 0.01*randn(size(t))', 'fs', 100, 'nsecs', 10)); % data.setName; % % % System filter % pzm = pzmodel(1, 1, 10); % f = miir(pzm); % % % Make output signal % dataf = filter(data, f); % dataf.setName; % % % fit model to output % mdl = smodel('(a.*(b + 2*pi*i*f)) ./ (b*(a + 2*pi*i*f))'); % mdl.setParams({'a', 'b'}, {2*pi 10*2*pi}); % mdl.setXvar('f'); % params = tdfit(dataf, plist('inputs', data, 'models', mdl, 'P0', [1 1])); % % % Evaluate fit % mdl.setValues(params); % BestModel = fftfilt(data, mdl); % BestModel.setName; % iplot(data, dataf, BestModel, plist('linestyles', {'-', '-', '--'})) % % % recovered parameters (in Hz) % params.y/2/pi % % VERSION: $Id: tdfit.m,v 1.45 2011/05/26 12:57:27 congedo Exp $ % % HISTORY: 05-10-2009 G. Congedo % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 'WhiteningFilters' - Use filter banks for whitening the outputs. % Note: you must fit the two channels at the same time % and supply four filter banks. function varargout = tdfit(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars, rest] = utils.helper.collect_objects(varargin(:), 'ao', in_names); [pl, pl_invars, rest] = utils.helper.collect_objects(rest, 'plist', in_names); if nargout == 0 error('### tdfit cannot be used as a modifier. Please give an output variable.'); end % combine plists pl = parse(pl, getDefaultPlist()); outputs = copy(as,1); % Extract necessary parameters inputs = pl.find('inputs'); TFmodels = pl.find('models'); WhFlts = pl.find('WhFlts'); Ncut = pl.find('Ncut'); P0 = pl.find('P0'); pnames = pl.find('pnames'); inNames = pl.find('innames'); outNames = pl.find('outnames'); % ADDP = find(pl, 'ADDP'); userOpts = pl.find('OPTSET'); weights = find(pl, 'WEIGHTS'); FitUnc = pl.find('FitUnc'); UncMtd = pl.find('UncMtd'); linUnc = pl.find('linUnc'); FastHess = pl.find('FastHess'); SymDiff = pl.find('SymDiff'); DiffOrder = pl.find('DiffOrder'); lb = pl.find('LB'); ub = pl.find('UB'); MCsearch = pl.find('MonteCarlo'); Npoints = pl.find('Npoints'); Noptims = pl.find('Noptims'); Algorithm = pl.find('Algorithm'); padRatio = pl.find('PadRatio'); SISO = pl.find('SingleInputSingleOutput'); GradSearch= pl.find('GradSearch'); estimator = pl.find('estimator'); % Convert yes/no, true/false, etc. to booleans FitUnc = utils.prog.yes2true(FitUnc); linUnc = utils.prog.yes2true(linUnc); MCsearch = utils.prog.yes2true(MCsearch); SymDiff = utils.prog.yes2true(SymDiff); SISO = utils.prog.yes2true(SISO); GradSearch = utils.prog.yes2true(GradSearch); % consistency check on inputs if isempty(TFmodels) error('### please specify at least a transfer function or a SSM model') end if isempty(inputs) error('### please give the inputs of the system') end if isempty(outputs) error('### please give the outputs of the system') end % if isempty(pnames) || ~iscellstr(pnames) % error('### please give the parameter names in a cell-array of strings') % end % look for aliases within the models if ~isa(TFmodels,'ssm') aliasNames = TFmodels(1).aliasNames; aliasValues = TFmodels(1).aliasValues; for ii=2:numel(TFmodels) if ~isempty(TFmodels(ii).aliasNames) aliasNames = union(aliasNames,TFmodels(ii).aliasNames); end end if ~isempty(aliasNames) for kk=1:numel(aliasNames) for ii=1:numel(TFmodels) ix = strcmp(TFmodels(ii).aliasNames,aliasNames{kk}); if sum(ix)==0 continue; else aliasValues{kk} = TFmodels(ii).aliasValues{ix}; end end end end end % common params set if isa(TFmodels, 'smodel') [TFmodels,pnames,P0] = cat_mdls(TFmodels,pnames,P0); elseif isa(TFmodels, 'matrix') [TFmodels,pnames,P0] = cat_mdls(TFmodels.objs,pnames,P0); end % if isempty(P0) || ~isnumeric(P0) && ~MCsearch % if isa(TFmodels, 'smodel') % if ~isempty(TFmodels(1).values) % P0 = TFmodels.values; % P0 = cell2mat(P0); % if numel(P0)~=numel(TFmodels(1).params) % error('### numbers of parameter values and names do not match') % end % else % error('### please give the initial guess in a numeric array') % end % end % if isa(TFmodels, 'matrix') % if ~isempty(TFmodels.objs(1).values) % P0 = TFmodels.objs(1).values; % P0 = cell2mat(P0); % if numel(P0)~=numel(TFmodels.objs(1).params) % error('### numbers of parameter values and names do not match') % end % else % error('### please give the initial guess in a numeric array') % end % end % end if ~isnumeric(lb) || ~isnumeric(ub) error('### please give lower and upper bounds in a numeric array') end if numel(lb)~=numel(ub) error('### please give lower and upper bounds of the same length') end if isa(TFmodels, 'smodel') pnames = TFmodels(1).params; Np = numel(pnames); % for kk=2:numel(TFmodels) % if numel(TFmodels(kk).params)~=Np % error('### number of parameters must be the same for all transfer function models') % end % if ~strcmp(TFmodels(kk).params,pnames) % error('### all transfer function models must have the same parameters') % end % end end if isa(TFmodels, 'matrix') pnames = TFmodels.objs(1).params; Np = numel(pnames); for kk=2:(TFmodels.nrows*TFmodels.ncols) if numel(TFmodels.objs(kk).params)~=Np error('### number of parameters must be the same for all transfer function models') end if ~strcmp(TFmodels.objs(kk).params,pnames) error('### all transfer function models must have the same parameters') end end end if isa(TFmodels, 'ssm') && isempty(pnames) pnames = getKeys(TFmodels.params); Np = numel(pnames); end % check TFmodels, inputs and outputs Nin = numel(inputs); Nout = numel(outputs); NTFmodels = numel(TFmodels); if isa(TFmodels, 'smodel') & size(TFmodels)~=[Nout,Nin] error('### the size of the transfer function does not match with the number of inputs and outputs') end if size(inputs)~=[Nin,1] inputs = inputs'; end if size(outputs)~=[Nout,1] outputs = outputs'; end % checks on inputs and outputs consistency inLen = inputs(1).len; inXdata = inputs(1).x; inFs = inputs(1).fs; for kk=2:Nin if inputs(kk).len~=inLen error('### all inputs must have the same length') end if inputs(kk).x~=inXdata error('### x-fields of all inputs must be the same') end if inputs(kk).fs~=inFs error('### fs-fields of all inputs must be the same') end end outLen = outputs(1).len; outXdata = outputs(1).x; outFs = outputs(1).fs; for kk=2:Nout if outputs(kk).len~=outLen error('### all outputs must have the same length') end if outputs(kk).x~=outXdata error('### x-fields of all outputs must be the same') end if outputs(kk).fs~=outFs error('### fs-fields of all outputs must be the same') end end if inLen~=outLen error('### inputs and outputs must have the same length') end if inXdata~=outXdata error('### x-fields of inputs and outputs must be the same') end if inFs~=outFs error('### fs-fields of inputs and outputs must be the same') end % check Whitening Filters Wf = ~isempty(WhFlts); Nwf = numel(WhFlts); if Wf if isempty(Ncut) Ncut = 100; end for ii=1:numel(WhFlts) if ~(isa(WhFlts(ii),'matrix')||isa(WhFlts(ii),'filterbank')) error('### whitening filters must be array of matrix or filterbank class') end end if Nwf~=Nout % size(WhFlts)~=[Nout,Nout] error('### the size of the whitening filter array does not match with the number of outputs to be filtered') end % extract poles and residues B = cell(Nout,1); % cell(Nout,Nin); A = B; for ii=1:Nwf if isa(WhFlts(ii),'matrix') Nflt = max(WhFlts(ii).osize); elseif isa(WhFlts(ii),'filterbank') Nflt = numel(WhFlts(ii).filters); end B{ii} = zeros(Nflt,1); A{ii} = B{ii}; for jj=1:Nflt if isa(WhFlts(ii),'matrix') B{ii}(jj) = WhFlts(ii).objs(jj).b(2); A{ii}(jj) = WhFlts(ii).objs(jj).a(1); elseif isa(WhFlts(ii),'filterbank') B{ii}(jj) = WhFlts(ii).filters(jj).b(2); A{ii}(jj) = WhFlts(ii).filters(jj).a(1); end end end end % Number of data before padding Ndata = inLen; fs = inFs; % nsecs = Ndata/fs; % Extract inputs inYdata = inputs.y; if size(inYdata)~=[inLen,Nin] inYdata = inYdata'; end outYdata = outputs.y; if size(outYdata)~=[outLen,Nout] outYdata = outYdata'; end if isa(TFmodels, 'smodel') || isa(TFmodels, 'matrix') % Zero-pad inputs before parameter estimation. % Pad-ratio is defined as the ratio between the number of zero-padding % points and the data length if ~isempty(padRatio) if ~isnumeric(padRatio) error('### please give a numeric pad ratio') else if padRatio~=0 Npad = round(padRatio * inLen); else Npad = 0; end end else Npad = 0; end NdataPad = Ndata + Npad; Nfft = NdataPad; % 2^nextpow2(NdataPad); Npad = Nfft - Ndata; zeroPad = zeros(Npad,Nin); inYdataPad = [inYdata;zeroPad]; % Fft inputs inFfts = fft(inYdataPad,Nfft); % zero through fs/2 % inFfts = inFfts(1:Nfft/2+1,:); % Sample TFmodels on fft-frequencies % zero through fs ff = (0:(Nfft-1))'.*fs./Nfft; % zero through fs/2 % ff = [0:(Nfft/2)]'.*fs/(Nfft/2+1); % ff = fs/2*linspace(0,1,Nfft/2+1)'; for kk=1:NTFmodels TFmodels(kk).setXvar('f'); TFmodels(kk).setXvals(ff); end % set values for aliases if ~isempty(aliasNames) for kk=1:numel(aliasNames) aliasValues{kk}.setXvar('f'); aliasValues{kk}.setXvals(ff); end end % assign aliases to variables aliasTrue = 0; if ~isempty(aliasNames) alias = cell(numel(aliasNames),1); for kk=1:numel(aliasNames) alias{kk} = aliasValues{kk}.double; % assignin('caller',aliasNames{kk},aliasValues{kk}.double); end aliasTrue = 1; end % Extract function_handles from TFmodels TFmodelFuncs = cell(size(TFmodels)); for ii=1:NTFmodels % TFmodelFuncs{ii} = TFmodels(ii).fitfunc; % TFmodelFuncs{ii} = % @(x)eval_mdl(TFmodels(ii).expr.s,TFmodels(ii).xvar,TFmodels(ii).xvals,TFmodels(ii).params,x); fcnstr = doSubsPnames(TFmodels(ii).expr.s,TFmodels(ii).params); if aliasTrue fcnstr = doSubsAlias(fcnstr,aliasNames); TFmodelFuncs{ii} = ... eval_mdl_alias(fcnstr,TFmodels(ii).xvar{1},TFmodels(ii).xvals{1},alias); else TFmodelFuncs{ii} = ... eval_mdl(fcnstr,TFmodels(ii).xvar{1},TFmodels(ii).xvals{1}); end end end % If requested, compute the analytical gradient if SymDiff || linUnc && (isa(TFmodels, 'smodel') || isa(TFmodels, 'matrix')) % compute symbolic 1st-order differentiation TFmodelDFuncsSmodel = cell(numel(pnames),1); for ll=1:numel(pnames) for ss=1:size(TFmodels,1) for tt=1:size(TFmodels,2) TFmodelDFuncsSmodel{ll}(ss,tt) = diff(TFmodels(ss,tt),pnames{ll}); end end end % extract anonymous function TFmodelDFuncs = cell(numel(pnames),1); for ll=1:numel(pnames) TFmodelDFuncs{ll} = cell(size(TFmodels)); for ii=1:NTFmodels if ~isempty(TFmodelDFuncsSmodel{ll}) fcnstr = doSubsPnames(TFmodelDFuncsSmodel{ll}(ii).expr.s,TFmodelDFuncsSmodel{ll}(ii).params); if aliasTrue fcnstr = doSubsAlias(fcnstr,aliasNames); TFmodelDFuncs{ll}{ii} = ... eval_mdl_alias(fcnstr,TFmodelDFuncsSmodel{ll}(ii).xvar{1},TFmodelDFuncsSmodel{ll}(ii).xvals{1},alias); else TFmodelDFuncs{ll}{ii} = ... eval_mdl(fcnstr,TFmodelDFuncsSmodel{ll}(ii).xvar{1},TFmodelDFuncsSmodel{ll}(ii).xvals{1}); end else TFmodelDFuncs{ll}{ii} = @(x)0; end end end if DiffOrder==2 % compute symbolic 2nd-order differentiation TFmodelHFuncsSmodel = cell(numel(pnames)); % for ii=1:NTFmodels % p = TFmodels(ii).params; for mm=1:numel(pnames) for ll=1:mm for ss=1:size(TFmodels,1) for tt=1:size(TFmodels,2) TFmodelHFuncsSmodel{ll,mm}(ss,tt) = diff(TFmodelDFuncsSmodel{ll}(ss,tt),pnames{mm}); end end end end % end % extract anonymous function TFmodelHFuncs = cell(numel(pnames)); for mm=1:numel(pnames) for ll=1:mm TFmodelHFuncs{ll,mm} = cell(size(TFmodels)); for ii=1:NTFmodels if ~isempty(TFmodelHFuncsSmodel{ll,mm}) % TFmodelHFuncs{ll,mm}{ii} = TFmodelHFuncsSmodel{ii}(ll,mm).fitfunc; % inverted indexes are for practicalities fcnstr = doSubsPnames(TFmodelHFuncsSmodel{ll,mm}(ii).expr.s,TFmodelHFuncsSmodel{ll,mm}(ii).params); if aliasTrue fcnstr = doSubsAlias(fcnstr,aliasNames); TFmodelHFuncs{ll,mm}{ii} = ... eval_mdl_alias(fcnstr,TFmodelHFuncsSmodel{ll,mm}(ii).xvar{1},TFmodelHFuncsSmodel{ll,mm}(ii).xvals{1},alias); else TFmodelHFuncs{ll,mm}{ii} = ... eval_mdl(fcnstr,TFmodelHFuncsSmodel{ll,mm}(ii).xvar{1},TFmodelHFuncsSmodel{ll,mm}(ii).xvals{1}); end else TFmodelHFuncs{ll,mm}{ii} = @(x)0; end end end end end end % Build index for faster computation if isa(TFmodels,'smodel') TFidx = compIdx(inYdata, Nout, TFmodels); end if exist('TFmodelDFuncsSmodel','var') TFDidx = cell(numel(pnames),1); for ll=1:numel(pnames) TFDidx{ll} = compIdx(inYdata, Nout, TFmodelDFuncsSmodel{ll}); end end if exist('TFmodelHFuncsSmodel','var') TFHidx = cell(numel(pnames)); for mm=1:numel(pnames) for ll=1:mm TFHidx{ll,mm} = compIdx(inYdata, Nout, TFmodelHFuncsSmodel{ll,mm}); end end end % Construct the output function handles from TFmodels as funtion of % parameters % if ~Wf outModelFuncs = cell(Nout,1); % if Nout>1 if isa(TFmodels, 'smodel') || isa(TFmodels, 'matrix') for ii=1:Nout if SISO outModelFuncs{ii} = @(x)mdl_fftfilt_SISO(x, inFfts(:,ii), TFmodelFuncs{ii}, Npad); else % outModelFuncs{ii} = @(x)mdl_fftfilt(x, ii, inFfts, TFmodelFuncs, Npad); outModelFuncs{ii} = @(x)mdl_fftfilt2(x, ii, inFfts, size(inFfts), TFmodelFuncs, TFidx, Npad); end end elseif isa(TFmodels, 'ssm') SSMmodels = cell(Nout,1); plsym = cell(Nout,1); for ii=1:Nout plsym{ii} = plist('return outputs', outNames{ii}, ... 'AOS VARIABLE NAMES', inNames{ii}, ... 'AOS', inputs(ii), ... 'reorganize', false, ... 'set', 'for simulate'); % SSMmodelOptim = TFmodels.reorganize(plsym{ii}); SSMmodels{ii} = TFmodels.reorganize(plsym{ii}); % SSMmodels{ii} = SSMmodelOptim.clearNumParams; outModelFuncs{ii} = @(x)mdl_ssm(x, pnames, inputs(ii), SSMmodels{ii}, plsym{ii}); end end % else % outModelFuncs{1} = @(x)mdl_fftfilt(x, ii, inFfts, TFmodelFuncs, Npad); % end % end % In case of symbolic differentiation, construct the output derivatives if SymDiff || linUnc outModelDFuncs = cell(numel(pnames),1); for ll=1:numel(pnames) outModelDFuncs{ll} = cell(Nout,1); for ii=1:Nout if SISO outModelDFuncs{ll}{ii} = @(x)mdl_fftfilt_SISO(x, inFfts(:,ii), TFmodelDFuncs{ll}{ii}, Npad); else % outModelDFuncs{ll}{ii} = @(x)mdl_fftfilt(x, ii, inFfts, TFmodelDFuncs{ll}, Npad); outModelDFuncs{ll}{ii} = @(x)mdl_fftfilt2(x, ii, inFfts, size(inFfts), TFmodelDFuncs{ll}, TFDidx{ll}, Npad); end end end if DiffOrder==2 outModelHFuncs = cell(numel(pnames)); for mm=1:numel(pnames) for ll=1:mm outModelHFuncs{ll,mm} = cell(Nout,1); for ii=1:Nout if SISO outModelHFuncs{ll,mm}{ii} = @(x)mdl_fftfilt_SISO(x, inFfts(:,ii), TFmodelFuncs{ll,mm}{ii}, Npad); else % outModelHFuncs{ll,mm}{ii} = @(x)mdl_fftfilt(x, ii, inFfts, TFmodelHFuncs{ll,mm}, Npad); outModelHFuncs{ll,mm}{ii} = @(x)mdl_fftfilt2(x, ii, inFfts, size(inFfts), TFmodelHFuncs{ll,mm}, TFHidx{ll,mm}, Npad); end end end end end end % In case the whitening filters are provided do a filtering both on % models and data if Wf % filter models outModelFuncs_w = cell(Nout,1); for ii=1:Nout % outModelFuncs_w{ii} = @(x)filter_mdl(x, B, A, outModelFuncs{ii}, Ncut); % outModelFuncs_w{ii} = @(x)mdl_fftfilt_wf(x, ii, inFfts, TFmodelFuncs, Npad, B, A, Ncut); % off-diagonal % outModelFuncs_w{ii} = @(x)mdl_fftfilt_wf(x, ii, outModelFuncs, B, A, Ncut); % diagonal outModelFuncs_w{ii} = @(x)filter_mdl2(x, B{ii}, A{ii}, outModelFuncs{ii}, Ncut); end % filter model derivatives if SymDiff || linUnc % whitening 1st derivatives outModelDFuncs_w = cell(numel(pnames),1); for ll=1:numel(pnames) outModelDFuncs_w{ll} = cell(Nout,1); for ii=1:Nout % off-diagonal % outModelDFuncs_w{ll}{ii} = @(x)mdl_fftfilt_wf(x, ii, outModelDFuncs{ll}, B, A, Ncut); % diagonal outModelDFuncs_w{ll}{ii} = @(x)filter_mdl2(x, B{ii}, A{ii}, outModelDFuncs{ll}{ii}, Ncut); end end if DiffOrder==2 % whitening 2nd derivatives outModelHFuncs_w = cell(numel(pnames)); for mm=1:numel(pnames) for ll=1:mm outModelHFuncs_w{ll,mm} = cell(Nout,1); for ii=1:Nout % off-diagonal % outModelDFuncs_w{ll}{ii} = @(x)mdl_fftfilt_wf(x, ii, outModelDFuncs{ll}, B, A, Ncut); % diagonal outModelHFuncs_w{ll,mm}{ii} = @(x)filter_mdl2(x, B{ii}, A{ii}, outModelHFuncs{ll,mm}{ii}, Ncut); end end end end end % filter data outYdata_w = zeros(size(outYdata)); outYdata_w(1:Ncut,:) = []; % off-diagonal % for ii=1:Nout % for jj=1:Nout % outYdata_w(:,ii) = outYdata_w(:,ii) + filter_data(B{ii,jj}, A{ii,jj}, outYdata(:,jj), Ncut); % end % end % diagonal for ii=1:Nout outYdata_w(:,ii) = filter_data(B{ii}, A{ii}, outYdata(:,ii), Ncut); end % set filtered values to pass to xfit for ii=1:Nout % outputs(ii).setY(outYdata_w(:,ii)); outputs(ii) = ao(plist('yvals',outYdata_w(:,ii))); end end % set the proper function to pass to xfit if Wf outModelFuncs_4xfit = outModelFuncs_w; else outModelFuncs_4xfit = outModelFuncs; end if SymDiff || linUnc % 1st derivatives outModelDFuncs_4xfit = cell(Nout,1); for ii=1:Nout outModelDFuncs_4xfit{ii} = cell(numel(pnames),1); for ll=1:numel(pnames) if Wf outModelDFuncs_4xfit{ii}{ll} = outModelDFuncs_w{ll}{ii}; else outModelDFuncs_4xfit{ii}{ll} = outModelDFuncs{ll}{ii}; end end end if DiffOrder==2 % 2nd derivatives outModelHFuncs_4xfit = cell(Nout,1); for ii=1:Nout outModelHFuncs_4xfit{ii} = cell(numel(pnames)); for mm=1:numel(pnames) for ll=1:mm if Wf outModelHFuncs_4xfit{ii}{ll,mm} = outModelHFuncs_w{ll,mm}{ii}; else outModelHFuncs_4xfit{ii}{ll,mm} = outModelHFuncs{ll,mm}{ii}; end end end end else outModelHFuncs_4xfit = {}; end else outModelDFuncs_4xfit = {}; outModelHFuncs_4xfit = {}; end % replicate pnames, P0, LB, UB for xfit if Nout>1 % pnames pnames_4xfit = cell(1,Nout); for ii=1:Nout pnames_4xfit{ii} = pnames; end % P0 P0_4xfit = cell(1,Nout); for ii=1:Nout P0_4xfit{ii} = P0; end % LB if ~isempty(lb) lb_4xfit = cell(1,Nout); for ii=1:Nout lb_4xfit{ii} = lb; end else lb_4xfit = []; end % UB if ~isempty(ub) ub_4xfit = cell(1,Nout); for ii=1:Nout ub_4xfit{ii} = ub; end else ub_4xfit = []; end else pnames_4xfit = pnames; P0_4xfit = P0; lb_4xfit = lb; ub_4xfit = ub; end % do fit with xfit fitpl = plist('Function', outModelFuncs_4xfit, ... 'pnames', pnames_4xfit, 'P0', P0_4xfit, 'LB', lb_4xfit, 'UB', ub_4xfit, ... 'Algorithm', Algorithm, 'FitUnc', FitUnc, 'UncMtd', UncMtd, 'linUnc', linUnc, 'FastHess', FastHess,... 'SymGrad', outModelDFuncs_4xfit, 'SymHess', outModelHFuncs_4xfit,... 'MonteCarlo', MCsearch, 'Npoints', Npoints, 'Noptims', Noptims, ... 'OPTSET', userOpts, 'estimator', estimator, 'weights', weights); % Preliminary Gradient search if GradSearch && exist('TFmodelDFuncs','var') % set new optimization options userOpts1 = optimset(userOpts,'GradObj','on','LargeScale','on','FinDiffType','central'); % 'PrecondBandWidth',0,'TolPCG',1e-4); fitpl1 = fitpl.pset('Algorithm','fminunc','OPTSET',userOpts1); % fit params = xfit(outputs, fitpl1); % update initial guess if Nout>1 P0_4xfit = cell(1,Nout); for ii=1:Nout P0_4xfit{ii} = params.y; end else P0_4xfit = params.y; end % restore old optimization options fitpl = fitpl.pset('Algorithm',Algorithm,'OPTSET',userOpts,'P0',P0_4xfit); % extract preliminary chain chain = params.chain; end % Final search params = xfit(outputs, fitpl); % Make output pest out = copy(params,1); % Concatenate chains and set it if exist('chain','var') chain = [chain;params.chain]; out.setChain(chain); end % Set Name and History mdlname = char(TFmodels(1).name); for kk=2:NTFmodels mdlname = strcat(mdlname,[',' char(TFmodels(kk).name)]); end out.name = sprintf('tdfit(%s)', mdlname); out.setNames(pnames); out.addHistory(getInfo('None'), pl, ao_invars(:), [as(:).hist]); % Set outputs if nargout > 0 varargout{1} = out; end end %-------------------------------------------------------------------------- % Included Functions %-------------------------------------------------------------------------- function outYdata = mdl_fftfilt(P, outIdx, inFfts, TFmdl, Npad) sz = size(inFfts); outFfts = zeros(sz); for ii=1:sz(2) outFfts(:,ii) = inFfts(:,ii).*TFmdl{outIdx,ii}(P); end outFfts = sum(outFfts,2); outYdata = ifft(outFfts(:,1), 'symmetric'); outYdata(end-Npad+1:end,:) = []; end %-------------------------------------------------------------------------- function outYdata = mdl_fftfilt2(P, outIdx, inFfts, sz, TFmdl, TFidx, Npad) TFeval = zeros(sz); for ii=1:sz(2) if TFidx(outIdx,ii) TFeval(:,ii) = TFmdl{outIdx,ii}(P); end end outFfts = inFfts.*TFeval; outFfts = sum(outFfts,2); outYdata = ifft(outFfts(:,1), 'symmetric'); outYdata(end-Npad+1:end,:) = []; end %-------------------------------------------------------------------------- function idx = compIdx(inYdata, Nout, mdl) % what inputs are actually different from zero b = any(inYdata); b = repmat(b,Nout,1); % what transfer functions are actually different from zero sz = size(mdl); a = zeros(sz); for ii=1:numel(mdl) a(ii) = ~(strcmp(mdl(ii).expr.s,'[]') || strcmp(mdl(ii).expr.s,'0') || strcmp(mdl(ii).expr.s,'0.0')); end % index for computation idx = logical(a.*b); end %-------------------------------------------------------------------------- function outYdata = mdl_fftfilt_SISO(P, inFfts, TFmdl, Npad) % sz = size(inFfts); % outFfts = zeros(sz); % parfor ii=1:sz(2) outFfts = inFfts.*TFmdl(P); % outFfts = sum(outFfts,2); outYdata = ifft(outFfts(:,1), 'symmetric'); outYdata(end-Npad+1:end,:) = []; end %-------------------------------------------------------------------------- function outYdata = mdl_ssm(P, pnames, inputs, model, plsym) model.doSetParameters(pnames,P); model.keepParameters(); % to numerical fs = inputs(1).fs; % model.modifyTimeStep(plist('newtimestep',1/fs)); model.modifyTimeStep(1/fs); %%% get expected outputs outYdata = simulate(model,plsym); outYdata = outYdata.objs(1).y; end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- % function outYdata = Dmdl_fftfilt(P, outIdx, Dix, inFfts, TFmdl, Npad) % % sz = size(inFfts); % outFfts = zeros(sz); % for ii=1:sz(2) % outFfts(:,ii) = inFfts(:,ii).*TFmdl{outIdx,ii}{Dix}(P); % end % outFfts = sum(outFfts,2); % outYdata = ifft(outFfts(:,1), 'symmetric'); % outYdata(end-Npad+1:end,:) = []; % % end %-------------------------------------------------------------------------- % function outYdata = mdl_fftfilt_wf(P, outIdx, inFfts, TFmdl, Npad, B, A, Ncut) % % sz = size(inFfts); % outFfts = zeros(sz); % for ii=1:sz(2) % outFfts(:,ii) = inFfts(:,ii).*TFmdl{outIdx,ii}(P); % end % outYdata = ifft(outFfts, 'symmetric'); % outYdata(end-Npad+1:end,:) = []; % for ii=1:sz(2) % outYdata_w(:,ii) = filter_data(B{outIdx,ii},A{outIdx,ii},outYdata(:,ii), Ncut); % end % outYdata = sum(outYdata_w,2); % % % outYdata_w = zeros(size(outYdata,1),1); % % outYdata_w(1:Ncut) = []; % % for jj=1:sz(2) % % outYdata_w = outYdata_w + filter_data(pol{outIdx,jj}, res{outIdx,jj}, outYdata(:,jj), Ncut); % % end % % outYdata = sum(outYdata_w,2); % % end %-------------------------------------------------------------------------- % function outYdata = mdl_fftfilt_wf(P, outIdx, TFmdl, B, A, Ncut) % % os = filter_mdl(P, B, A, TFmdl, Ncut); % outYdata = os(:,outIdx); % % end %-------------------------------------------------------------------------- % function os = filter_mdl(P, B, A, oFuncs, Ncut) % % Nout = numel(oFuncs); % for ii=1:Nout % Y(:,ii) = oFuncs{ii}(P); % end % os = zeros(size(Y)); % os(1:Ncut,:) = []; % for ii=1:Nout % for jj=1:Nout % os(:,ii) = os(:,ii) + filter_data(B{ii,jj}, A{ii,jj}, Y(:,jj), Ncut); % end % end % % end %-------------------------------------------------------------------------- % function outYdata = Dmdl_fftfilt_wf(P, outIdx, TFmdl, B, A, Ncut) % % os = filter_mdl(P, B, A, TFmdl, Ncut); % outYdata = os(:,outIdx); % % end %-------------------------------------------------------------------------- function o = filter_data(B, A, X, Ncut) N = numel(X); M = numel(B); Y = zeros(N,M); % parfor ii=1:M for ii=1:M Y(:,ii) = filter(A(ii),[1 B(ii)],X); end o = sum(Y,2); o(1:Ncut) = []; end %-------------------------------------------------------------------------- function o = filter_mdl2(P, B, A, oFunc, Ncut) X = oFunc(P); N = numel(X); M = numel(B); Y = zeros(N,M); for ii=1:M Y(:,ii) = filter(A(ii),[1 B(ii)],X); end o = sum(Y,2); o(1:Ncut) = []; end %-------------------------------------------------------------------------- function fcn = eval_mdl(str,xvar,xvals) fcn = eval(['@(P,',xvar,')(',str,')']); fcn = @(x)fcn(x,xvals); end %-------------------------------------------------------------------------- function fcn = eval_mdl_alias(str,xvar,xvals,alias) fcn = eval(['@(P,',xvar,',alias',')(',str,')']); fcn = @(x)fcn(x,xvals,alias); end %-------------------------------------------------------------------------- function str = doSubsPnames(str,params) lengths = zeros(1,numel(params)); for ii=1:numel(params) lengths(ii) = length(params{ii}); end [dummy,ix] = sort(lengths,'descend'); repstr = cell(1,numel(params)); for ii=1:numel(params) repstr{ii} = ['P(' int2str(ii) ')']; end str = regexprep(str,params(ix),repstr(ix)); if isempty(str) str = '0'; end end %-------------------------------------------------------------------------- function str = doSubsAlias(str,alias) lengths = zeros(1,numel(alias)); for ii=1:numel(alias) lengths(ii) = length(alias{ii}); end [dummy,ix] = sort(lengths,'descend'); repstr = cell(1,numel(alias)); for ii=1:numel(alias) repstr{ii} = ['alias{' int2str(ii) '}']; end str = regexprep(str,alias(ix),repstr(ix)); end %-------------------------------------------------------------------------- function [newMdls,pnames,P0]=cat_mdls(mdls,usedParams,P0) pnames = mdls(1).params; % union of all parameters for ii=2:numel(mdls) pnames = union(pnames,mdls(ii).params); end pvalues = cell(1,numel(pnames)); for kk=1:numel(pnames) for ii=1:numel(mdls) ix = strcmp(mdls(ii).params,pnames{kk}); if sum(ix)==0 continue; else pvalues{kk} = mdls(ii).values{ix}; end end end % set the used one for ii=1:numel(mdls) mdls(ii).setParams(pnames,pvalues); if ~isempty(usedParams) mdls(ii).subs(setdiff(pnames,usedParams)); else usedParams = pnames; end end % copy to new models for ii=1:size(mdls,1) for jj=1:size(mdls,2) newMdls(ii,jj) = smodel(plist('expression',mdls(ii,jj).expr,... 'xvar',mdls(ii,jj).xvar,'xvals',mdls(ii,jj).xvals,... 'name',mdls(ii,jj).name)); end end % set the same parameters for all for ii=1:numel(newMdls) if ~isempty(P0) newMdls(ii).setParams(usedParams,P0); else for kk=1:numel(usedParams) ix = strcmp(usedParams(kk),pnames); P0(kk) = pvalues{ix}; end newMdls(ii).setParams(usedParams,P0); end end pnames = usedParams; end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: tdfit.m,v 1.45 2011/05/26 12:57:27 congedo Exp $', sets, pl); ii.setModifier(false); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % Inputs p = param({'Inputs', 'An array of input AOs, one per each experiment.'}, paramValue.EMPTY_DOUBLE); pl.append(p); % Models p = param({'Models', 'An array of transfer function SMODELs.'}, paramValue.EMPTY_DOUBLE); pl.append(p); % PadRatio p = param({'PadRatio', ['PadRatio is defined as the ratio between the number of zero-pad points '... 'and the data length.<br>'... 'Define how much to zero-pad data after the signal.<br>'... 'Being <tt>tdfit</tt> a fft-based algorithm, no zero-padding might bias the estimation, '... 'therefore it is strongly suggested to do that.']}, 1); pl.append(p); % Whitening Filters p = param({'WhFlts', 'An array of FILTERBANKs containing the whitening filters per each output AO.'}, paramValue.EMPTY_DOUBLE); pl.append(p); % Parameters p = param({'Pnames', 'A cell-array of parameter names to fit.'}, paramValue.EMPTY_CELL); pl.append(p); % P0 p = param({'P0', 'An array of starting guesses for the parameters.'}, paramValue.EMPTY_DOUBLE); pl.append(p); % LB p = param({'LB', ['Lower bounds for the parameters.<br>'... 'This improves convergency. Mandatory for Monte Carlo.']}, paramValue.EMPTY_DOUBLE); pl.append(p); % UB p = param({'UB', ['Upper bounds for the parameters.<br>'... 'This improves the convergency. Mandatory for Monte Carlo.']}, paramValue.EMPTY_DOUBLE); pl.append(p); % Algorithm p = param({'ALGORITHM', ['A string defining the fitting algorithm.<br>'... '<tt>fminunc</tt>, <tt>fmincon</tt> require ''Optimization Toolbox'' to be installed.<br>'... '<tt>patternsearch</tt>, <tt>ga</tt>, <tt>simulannealbnd</tt> require ''Genetic Algorithm and Direct Search'' to be installed.<br>']}, ... {1, {'fminsearch', 'fminunc', 'fmincon', 'patternsearch', 'ga', 'simulannealbnd'}, paramValue.SINGLE}); pl.append(p); % OPTSET p = param({'OPTSET', ['An optimisation structure to pass to the fitting algorithm.<br>'... 'See <tt>fminsearch</tt>, <tt>fminunc</tt>, <tt>fmincon</tt>, <tt>optimset</tt>, for details.<br>'... 'See <tt>patternsearch</tt>, <tt>psoptimset</tt>, for details.<br>'... 'See <tt>ga</tt>, <tt>gaoptimset</tt>, for details.<br>'... 'See <tt>simulannealbnd</tt>, <tt>saoptimset</tt>, for details.']}, paramValue.EMPTY_STRING); pl.append(p); % SymDiff p = param({'SymDiff', 'Use symbolic derivatives or not. Only for gradient-based algorithm or for LinUnc option.'}, paramValue.NO_YES); pl.append(p); % DiffOrder p = param({'DiffOrder', 'Symbolic derivative order. Only for SymDiff option.'}, {1, {1,2}, paramValue.SINGLE}); pl.append(p); % FitUnc p = param({'FitUnc', 'Fit parameter uncertainties or not.'}, paramValue.YES_NO); pl.append(p); % UncMtd p = param({'UncMtd', ['Choose the uncertainties estimation method.<br>'... 'For multi-channel fitting <tt>hessian</tt> is mandatory.']}, {1, {'hessian', 'jacobian'}, paramValue.SINGLE}); pl.append(p); % LinUnc p = param({'LinUnc', 'Force linear symbolic uncertainties.'}, paramValue.YES_NO); pl.append(p); % GradSearch p = param({'GradSearch', 'Do a preliminary gradient-based search using the BFGS Quasi-Newton method.'}, paramValue.NO_YES); pl.append(p); % MonteCarlo p = param({'MonteCarlo', ['Do a Monte Carlo search in the parameter space.<br>'... 'Useful when dealing with high multiplicity of local minima. May be computer-expensive.<br>'... 'Note that, if used, P0 will be ignored. It also requires to define LB and UB.']}, paramValue.NO_YES); pl.append(p); % Npoints p = param({'Npoints', 'Set the number of points in the parameter space to be extracted.'}, 100000); pl.append(p); % Noptims p = param({'Noptims', 'Set the number of optimizations to be performed after the Monte Carlo.'}, 10); pl.append(p); % SISO p = param({'SingleInputSingleOutput', 'Specify whether the model should be considered as Single-Input/Single-Output model. This is for performance.'}, paramValue.NO_YES); pl.append(p); end % END