view m-toolbox/html_help/help/ug/convert_models_content.html @ 23:a71a40911c27
database-connection-manager
Update check for repository connection parameter in constructors
author
Daniele Nicolodi <nicolodi@science.unitn.it>
date
Mon, 05 Dec 2011 16:20:06 +0100 (2011-12-05)
parents
f0afece42f48
children
line source
+ − The different constructors from each transfer function representations accept as
+ − an input a model from a another representation so that they can all be converted
+ − between the different representations. In the current LTPDA version, this applies
+ − for pole/zero model and rational representation. Following versions will cover the
+ − partial fraction representation. This is shown in the following transformation table:
+ −
+ − <div align="center">
+ − <img src="images/TransformTable.png" alt="Pole/zero model TF" border="3">
+ − </div>
+ −
+ − <h2>From pzmodel to rational</a></h2>
+ − You can transform a <tt>pzmodel</tt> into a <tt>rational</tt> by typing:
+ − <br>
+ − <div class="fragment"><pre>
+ − >> rat = rational(pzmodel)
+ − </pre></div>
+ − <br>
+ −
+ − <h2>From rational to pzmodel</a></h2>
+ − You can transform a <tt>rational</tt> into a <tt>pzmodel</tt> by typing:
+ − <br>
+ − <div class="fragment"><pre>
+ − >> rat = pzmodel(rational)
+ − </pre></div>
+ − <br>
+ −
+ − <h2>Algorithm</a></h2>
+ − To translate from <tt>rational</tt> to <tt>pzmodel</tt> representation we need to
+ − compute the roots of a polynomial and the inverse operation is performed going from
+ − <tt>pzmodel</tt> to <tt>rational</tt>. More information about the algorithm used can be
+ − found in MATLAB's functions <a href="matlab:doc('poly')">poly</a> and
+ − <a href="matlab:doc('roots')">roots</a>.
+ −
+ −