Mercurial > hg > ltpda
view m-toolbox/classes/@ao/fftfilt_core.m @ 22:b11e88004fca database-connection-manager
Update collection.fromRepository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% FFTFILT_CORE Simple core method which computes the fft filter. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: Simple core method which computes the fft filter. % % CALL: ao = fftfilt_core(ao, filt, Npad) % % INPUTS: ao: Single input analysis object % Npad: Number of bins for zero padding % filt: The filter to apply to the data % smodel - a model to filter with. % mfir - an FIR filter % miir - an IIR filter % tf - an ltpda_tf object. Including: % - pzmodel % - rational % - parfrac % % VERSION: $Id: fftfilt_core.m,v 1.17 2011/05/30 10:42:32 mauro Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function bs = fftfilt_core(varargin) bs = varargin{1}; filt = varargin{2}; Npad = varargin{3}; if nargin == 4 inCondsMdl = varargin{4}; else inCondsMdl = []; end [m, n] = size(bs.data.y); % FFT time-series data fs = bs.data.fs; % zero padding data before fft if isempty(Npad) Npad = length(bs.data.y) - 1; end if n == 1 tdat = ao(tsdata([bs.data.y;zeros(Npad,1)], fs)); else tdat = ao(tsdata([bs.data.y zeros(1,Npad)], fs)); end % get onesided fft ft = fft_core(tdat, 'one'); switch class(filt) case 'smodel' % Evaluate model at the given frequencies amdly = filt.setXvals(ft.data.x).double; amdly = reshape(amdly, size(ft.data.y)); amdl = ao(fsdata(ft.data.x, amdly, fs)); % set units bs.setYunits(simplify(bs.data.yunits .* filt.yunits)); case {'miir', 'mfir', 'pzmodel', 'parfrac', 'rational'} % Check if the frequency of the filter is the same as the frequency % of the AO. if isa (filt, 'ltpda_filter') && fs ~= filt.fs error('### Please use a filter with the same frequency as the AO [%dHz]', fs); end % get filter response on given frequencies amdl = resp(filt, plist('f', ft.data.x)); % set units bs.setYunits(simplify(bs.data.yunits .* filt.ounits ./ filt.iunits)); case 'ao' % check if filter and data have the same shape if size(ft.data.y)~=size(filt.data.y) % reshape amdl = copy(filt,1); amdl.setX(ft.data.x); amdl.setY(reshape(filt.data.y,size(ft.data.x))); amdl.setName(filt.name); else amdl = copy(filt,1); amdl.setName(filt.name); end % set units bs.setYunits(simplify(bs.data.yunits .* amdl.data.yunits)); case 'collection' % run over collection elements amdl = ao(fsdata(ft.data.x, ones(size(ft.data.x)), fs)); for ii=1:numel(filt.objs) switch class(filt.objs{ii}) case 'smodel' % Evaluate model at the given frequencies amdly = filt.objs{ii}.setXvals(ft.data.x).double; amdly = reshape(amdly, size(ft.data.y)); amdl_temp = ao(fsdata(ft.data.x, amdly, fs)); % set units bs.setYunits(simplify(bs.data.yunits .* filt.objs{ii}.yunits)); case {'miir'} % get filter response on given frequencies amdly = utils.math.mtxiirresp(filt.objs{ii},ft.data.x,fs,[]); amdl_temp = ao(fsdata(ft.data.x, amdly, fs)); % set units bs.setYunits(simplify(bs.data.yunits .* filt.objs{ii}.ounits ./ filt.objs{ii}.iunits)); case 'ao' % check if filter and data have the same shape if size(ft.data.y)~=size(filt.objs{ii}.data.y) % reshape amdl_temp = copy(filt.objs{ii},1); amdl_temp.setX(ft.data.x); amdl_temp.setY(reshape(filt.objs{ii}.data.y,size(ft.data.x))); amdl_temp.setName(filt.objs{ii}.name); else amdl_temp = copy(filt.objs{ii},1); amdl_temp.setName(filt.objs{ii}.name); end % set units bs.setYunits(simplify(bs.data.yunits .* amdl_temp.data.yunits)); case 'filterbank' % get filter response on given frequencies amdly = utils.math.mtxiirresp(filt.objs{ii}.filters,ft.data.x,fs,filt.objs{ii}.type); amdl_temp = ao(fsdata(ft.data.x, amdly, fs)); % handle units switch lower(filt.objs{ii}.type) case 'parallel' % set units of the output object bs.setYunits(simplify(bs.data.yunits .* filt.objs{ii}.filters(1).ounits ./ filt.objs{ii}.filters(1).iunits)); case 'series' % get units from the series sunits = filt.objs{ii}.filters(1).ounits ./ filt.objs{ii}.filters(1).iunits; for jj = 2:numel(filt.objs{ii}.filters) sunits = sunits.*filt.objs{ii}.filters(jj).ounits ./ filt.objs{ii}.filters(jj).iunits; end % set units of the output object bs.setYunits(simplify(bs.data.yunits .* sunits)); end end % update response amdl = amdl .* amdl_temp; end otherwise error('### Unknown filter mode.'); end % Add initial conditions if ~isempty(inCondsMdl) && ~isempty(inCondsMdl.expr.s) inCondsMdl.setXvals(amdl.x); inCondsMdl.setXunits(amdl.xunits); inCondsMdl.setYunits(amdl.yunits*ft.yunits); inCondsEval = inCondsMdl.eval; % Multiply by model and take inverse FFT y = ifft_core(ft.*amdl+inCondsEval, 'symmetric'); else % Multiply by model and take inverse FFT y = ifft_core(ft.*amdl, 'symmetric'); end % split and reshape the data if m == 1 bs.setY(y.data.getY(1:n)); else bs.setY(y.data.getY(1:m)); end % clear errors bs.clearErrors; end