Mercurial > hg > ltpda
view m-toolbox/classes/@ao/polyfit.m @ 22:b11e88004fca database-connection-manager
Update collection.fromRepository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% POLYFIT overloads polyfit() function of MATLAB for Analysis Objects. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: POLYFIT overloads polyfit() function of MATLAB for Analysis % Objects. It finds the coefficients of a polynomial P(X) of % degree N that fits the data Y best in a least-squares sense: % P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1) % % CALL: bs = polyfit(a1, a2, a3, ..., pl) % bs = polyfit(as,pl) % bs = as.polyfit(pl) % % INPUTS: aN - input analysis objects with data to be fitted. % X will be a.x % Y will be a.y % as - input analysis objects array % pl - input parameter list % % OUTPUTs: bs - An array of pest objects, each with the N+1 fitting coefficients P(j) % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'polyfit')">Parameters Description</a> % % VERSION: $Id: polyfit.m,v 1.48 2011/05/12 03:37:08 mauro Exp $ % % EXAMPLES: % % %% Make fake AO from polyval % nsecs = 100; % fs = 10; % % u = unit('fm s^-2'); % % pl = plist('nsecs', nsecs, 'fs', fs, ... % 'tsfcn', 'polyval([3 2 1 ], t) + 1000*randn(size(t))', ... % 'xunits', 's', 'yunits', u); % % a1 = ao(pl); % % %% Fit a polynomial % N = 3; % p1 = polyfit(a1, plist('N', N)); % p2 = polyfit(a1, plist('N', N, 'rescale', true)); % % %% Compute fit: evaluating pest % %% Here we need to specify that we want to use the 'x' field of % %% the AO a to build the output AO % % b1 = p1.eval(plist('type', 'tsdata', 'XData', a1, 'Xfield', 'x')); % b2 = p2.eval(a1, plist('type', 'tsdata', 'Xfield', 'x')); % % %% Plot fit % iplot(a1, b1, plist('LineStyles', {'', '--'})); % % %% Remove polynomial % c = a1-b1; % iplot(c) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = polyfit(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); if nargout == 0 error('### polyfit can not be used as a modifier method. Please give at least one output'); end % Combine plists use_pl = parse(pl, getDefaultPlist); % Degree of polynomial to fit N = find(use_pl, 'N'); % Center and rescale the data rescale = utils.prog.yes2true(find(use_pl, 'rescale')); % Loop over input AOs for jj = 1 : numel(as) if isa(as(jj).data, 'cdata') warning('!!! Can''t fit to cdata objects. Skipping AO %s', ao_invars{jj}); bs = []; else % Fit polynomial mu = []; if rescale [p,s,mu] = polyfit(as(jj).x, as(jj).y, N); else [p,s] = polyfit(as(jj).x, as(jj).y, N); end % prepare models, units, names model = []; for kk = 1:N+1 names{kk} = ['P' num2str(kk)]; units{kk} = as(jj).yunits ./ ((as(jj).xunits).^(N-kk+1)); if kk == 1 model = [model 'P' num2str(kk) '*X.^' num2str(N-kk+1)]; else model = [model ' + P' num2str(kk) '*X.^' num2str(N-kk+1)]; end end model = smodel(plist('expression', model, ... 'params', names, ... 'values', p, ... 'xvar', 'X', ... 'xunits', as(jj).xunits, ... 'yunits', as(jj).yunits ... )); % Build new pest objects from these N+1 coefficients bs(jj) = pest; bs(jj).setY(p); bs(jj).setDof(s.df); bs(jj).setNames(names{:}); bs(jj).setYunits(units); bs(jj).setModels(model); bs(jj).name = sprintf('polyfit(%s)', ao_invars{jj}); bs(jj).addHistory(getInfo('None'), use_pl, ao_invars(jj), as(jj).hist); % Set procinfo object with some data bs(jj).procinfo = plist('S', s, 'mu', mu); end end % Set output varargout = utils.helper.setoutputs(nargout, bs); end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist(); end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: polyfit.m,v 1.48 2011/05/12 03:37:08 mauro Exp $', sets, pl); ii.setModifier(false); ii.setArgsmin(1); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if ~exist('pl', 'var') || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % N p = param({'N','Degree of polynomial to fit.'}, {2, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, paramValue.SINGLE}); pl.append(p); % Rescale p = param({'rescale',['set to ''true'' or ''false'' to center and ', ... 'rescale the data before fitting.<br>', ... 'See "help polyfit" for further details.']}, paramValue.FALSE_TRUE); pl.append(p); end % END