Mercurial > hg > ltpda
view m-toolbox/test/draftConvert128_3toAOs.m @ 22:b11e88004fca database-connection-manager
Update collection.fromRepository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
function out = draftConvert128_3toAOs(filename) if nargin == 0 filename = '/data/home/indiep/DataAnalysis/a109721/DMUDMU_A/LSM10030_tmpk/LSM10030_tmpk_200910052051Z_F200909301020Z_T200909301021Z_hex.txt'; end fid = fopen(filename); format128_3 = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %*[^\n]'; C = textscan(fid, format128_3, 'Delimiter', '\t'); fclose(fid); timeFormat = java.text.SimpleDateFormat('dd-MM-yyyy HH:mm:ss.SSS'); timeFormat.setTimeZone(java.util.TimeZone.getTimeZone('UTC')); timeFormat.parse('01-01-2000 00:00:00.000'); toff = timeFormat.getCalendar.getTimeInMillis; timeFormat = java.text.SimpleDateFormat('dd MMM yyyy HH:mm:ss.SSS'); timeFormat.setTimeZone(java.util.TimeZone.getTimeZone('UTC')); %%%%%%%%%%%%%%%%%%%%%%%%%% Convert time string %%%%%%%%%%%%%%%%%%%%%%%%%% % Column 2 N = 2; tUDMS = []; for ii = 3:numel(C{N}) timeFormat.parse(C{N}{ii}); tUDMS = [tUDMS; (timeFormat.getCalendar.getTimeInMillis - toff)/1000]; end % Column 3 N = 3; tDMU = hex2x_time(char(C{N}{3:end})); DMU_UDMS_TIME = ao(xydata(tDMU, tUDMS)); DMU_UDMS_TIME.setName('DMU_UDMS_TIME', 'internal'); t0 = time(); t0.setTimezone('UTC'); t0.setEpochtime(round(toff + tDMU(1)*1000)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Convert flags %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Column 5 N = 5; DMU_X1_C1_GT_5 = createFlagAO(N, @hex2dec); % Column 6 N = 6; DMU_X1_C1_GT_42 = createFlagAO(N, @hex2dec); % Column 7 N = 7; DMU_X1_C1_LT_38 = createFlagAO(N, @hex2dec); % Column 8 N = 8; DMU_X1_C1_GT_70 = createFlagAO(N, @hex2dec); % Column 9 N = 9; DMU_X1_ERR1 = createFlagAO(N, @hex2dec); % Column 10 N = 10; DMU_X1_ERR2 = createFlagAO(N, @hex2dec); % Column 11 N = 11; DMU_X1_ERR3 = createFlagAO(N, @hex2dec); % Column 12 N = 12; DMU_X1_ETA_PHI = createFlagAO(N, @hex2dec); % Column 13 N = 13; DMU_X1_VALIDITY = createFlagAO(N, @hex2dec); % Column 14 N = 14; DMU_X1_ETA_PHI_VALIDITY = createFlagAO(N, @hex2dec); % Column 15 N = 15; DMU_X1_C1_GT_10 = createFlagAO(N, @hex2dec); % Column 16 N = 16; DMU_X1_C1_LT_6 = createFlagAO(N, @hex2dec); % Column 19 N = 19; DMU_X12_C12_GT_5 = createFlagAO(N, @hex2dec); % Column 20 N = 20; DMU_X12_C12_GT_42 = createFlagAO(N, @hex2dec); % Column 21 N = 21; DMU_X12_C12_LT_38 = createFlagAO(N, @hex2dec); % Column 22 N = 22; DMU_X12_C12_GT_70 = createFlagAO(N, @hex2dec); % Column 23 N = 23; DMU_X12_ERR4 = createFlagAO(N, @hex2dec); % Column 24 N = 24; DMU_X12_ERR5 = createFlagAO(N, @hex2dec); % Column 25 N = 25; DMU_X12_ERR6 = createFlagAO(N, @hex2dec); % Column 26 N = 26; DMU_X12_ETA_PHI = createFlagAO(N, @hex2dec); % Column 27 N = 27; DMU_X12_VALIDITY = createFlagAO(N, @hex2dec); % Column 28 N = 28; DMU_X12_ETA_PHI_VALIDITY = createFlagAO(N, @hex2dec); % Column 29 N = 29; DMU_X12_C1_GT_10 = createFlagAO(N, @hex2dec); % Column 30 N = 30; DMU_X12_C1_LT_6 = createFlagAO(N, @hex2dec); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Convert data %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Column 17 N = 17; DMU_X1_FILT = createDataAO(N, @hex2num, 'm'); % Column 31 N = 31; DMU_X12_FILT = createDataAO(N, @hex2num, 'm'); % Column 32 N = 32; DMU_DC_PHI_1_FILT = createDataAO(N, @hex2single, 'rad'); % Column 33 N = 33; DMU_DC_ETA_1_FILT = createDataAO(N, @hex2single, 'rad'); % Column 34 N = 34; DMU_DC_PHI_2_FILT = createDataAO(N, @hex2single, 'rad'); % Column 35 N = 35; DMU_DC_ETA_2_FILT = createDataAO(N, @hex2single, 'rad'); % Column 36 N = 36; DMU_DWS_PHI_1_FILT = createDataAO(N, @hex2single, 'rad'); % Column 37 N = 37; DMU_DWS_ETA_1_FILT = createDataAO(N, @hex2single, 'rad'); % Column 38 N = 38; DMU_DWS_PHI_2_FILT = createDataAO(N, @hex2single, 'rad'); % Column 39 N = 39; DMU_DWS_ETA_2_FILT = createDataAO(N, @hex2single, 'rad'); % Column 40 N = 40; DMU_PSI_F_FILT = createDataAO(N, @hex2num, 'rad'); % Column 41 N = 41; DMU_PSI_R_FILT = createDataAO(N, @hex2num, 'rad'); % Column 42 N = 42; DMU_SIGMA_F_FILT = createDataAO(N, @hex2single, ''); % Column 43 N = 43; DMU_SIGMA_R_FILT = createDataAO(N, @hex2single, ''); out = [... DMU_X1_FILT, ... DMU_X12_FILT, ... DMU_DC_PHI_1_FILT, ... DMU_DC_ETA_1_FILT, ... DMU_DC_PHI_2_FILT, ... DMU_DC_ETA_2_FILT, ... DMU_DWS_PHI_1_FILT, ... DMU_DWS_ETA_1_FILT, ... DMU_DWS_PHI_2_FILT, ... DMU_DWS_ETA_2_FILT, ... DMU_PSI_F_FILT, ... DMU_PSI_R_FILT, ... DMU_SIGMA_F_FILT, ... DMU_SIGMA_R_FILT, ... DMU_X1_C1_GT_5, ... DMU_X1_C1_GT_42, ... DMU_X1_C1_LT_38, ... DMU_X1_C1_GT_70, ... DMU_X1_ERR1, ... DMU_X1_ERR2, ... DMU_X1_ERR3, ... DMU_X1_ETA_PHI, ... DMU_X1_VALIDITY, ... DMU_X1_ETA_PHI_VALIDITY, ... DMU_X1_C1_GT_10, ... DMU_X1_C1_LT_6, ... DMU_X12_C12_GT_5, ... DMU_X12_C12_GT_42, ... DMU_X12_C12_LT_38, ... DMU_X12_C12_GT_70, ... DMU_X12_ERR4, ... DMU_X12_ERR5, ... DMU_X12_ERR6, ... DMU_X12_ETA_PHI, ... DMU_X12_VALIDITY, ... DMU_X12_ETA_PHI_VALIDITY, ... DMU_X12_C1_GT_10, ... DMU_X12_C1_LT_6, ... DMU_UDMS_TIME]; out = addHistoryStep(out, plist('filename', filename), '$Id: draftConvert128_3toAOs.m,v 1.3 2009/10/19 10:35:12 ingo Exp $', []); out.submit(); function out = createFlagAO(N, convert_fcn) d = cdata(convert_fcn(char(C{N}{3:end}))); out = ao(d); out.setName(C{N}{2}, 'internal'); out.setDescription(C{N}{1}, 'internal'); end function out = createDataAO(N, convert_fcn, unit) d = tsdata(convert_fcn(char(C{N}{3:end})), 10, t0); out = ao(d); out.setName(C{N}{2}, 'internal'); out.setDescription(C{N}{1}, 'internal'); out.setXunits('s', 'internal'); out.setYunits(unit, 'internal'); end end function x = hex2x_time(s) % The first 4 bytes are the seconds from the 1 January 2000 s1 = s(:, 1:8); % The last byte divided by 256 in milliseconds s2 = s(:, 9:10); x = hex2dec(s1) + hex2dec(s2)/256; end %HEX2SINGLE Convert single precision IEEE hexadecimal string to number. % HEX2SINGLE(S), where S is a 8 character string containing % a hexadecimal number, returns a double type number % equal to the IEEE single precision % floating point number it represents. Fewer than 8 % characters are padded on the right with zeros. % % If S is a character array, each row is interpreted as a single % precision number (and returned as a double). % % NaNs, infinities and denorms are handled correctly. % % Example: % hexsingle2num('40490fdb') returns Pi. % hexsingle2num('bf8') returns -1. % % See also HEX2NUM. % Based on Matlab's hex2num. % Note: IEEE Standard 754 for floating point numbers % % Floating point numbers are represented as: % x = +/- (1+f)*2^e % % doubles: 64 bits % Bit 63 (1 bit) = sign (0=positive, 1=negative) % Bit 62 to 52 (11 bits)= exponent biased by 1023 % Bit 51 to 0 (52 bits)= fraction f of the number 1.f % singles: 32 bits % Bit 31 (1 bit) = sign (0=positive, 1=negative) % Bit 30 to 23 (8 bits) = exponent biased by 127 % Bit 22 to 0 (23 bits)= fraction f of the number 1.f % % Original file hexsingle2num from Mark Lubinski % Changed on 19-may-05 by Matthias Noell: denormalized power set 2^-126 function x = hex2single(s) if iscellstr(s), s = char(s); end if ~ischar(s) error('Input to hexsingle2num must be a string.') end if isempty(s), x = []; return, end [row,col] = size(s); blanks = find(s==' '); % Find the blanks at the end if ~isempty(blanks), s(blanks) = '0'; end % Zero pad the shorter hex numbers. % Convert characters to numeric digits. % More than 8 characters are ignored % For double: d = zeros(row,16); d = zeros(row,8); d(:,1:col) = abs(lower(s)) - '0'; d = d + ('0'+10-'a').*(d>9); neg = d(:,1) > 7; d(:,1) = d(:,1)-8*neg; if any(d > 15) | any(d < 0) error('Input string to hexsingle2num should have just 0-9, a-f, or A-F.') end % Floating point exponent. % For double: e = 16*(16*(d(:,1)-4) + d(:,2)) + d(:,3) + 1; % For double: e = 256*d(:,1) + 16*d(:,2) + d(:,3) - 1023; expBit = (d(:,3) > 7); e = 32*d(:,1) + 2*d(:,2) + expBit - 127; d(:,3) = d(:,3)-8*expBit; % Remove most sig. bit of d(:,3) which belongs to exponent % Floating point fraction. % For double: sixteens = [16;256;4096;65536;1048576;16777216;268435456]; % For double: sixteens2 = 268435456*sixteens(1:6); % For double: multiplier = 1./[sixteens;sixteens2]; % For double: f = d(:,4:16)*multiplier; sixteens = [16;256;4096;65536;1048576;16777216]; multiplier = 2./[sixteens]; f = d(:,3:8)*multiplier; x = zeros(row,1); % Scale the fraction by 2 to the exponent. % For double: overinf = find((e>1023) & (f==0)); overinf = find((e>127) & (f==0)); if ~isempty(overinf), x(overinf) = inf; end % For double: overNaN = find((e>1023) & (f~=0)); overNaN = find((e>127) & (f~=0)); if ~isempty(overNaN), x(overNaN) = NaN; end % For double: underflow = find(e<-1022); underflow = find(e<-126); if ~isempty(underflow), x(underflow) = pow2(f(underflow),-126); end % For double: allothers = find((e<=1023) & (e>=-1022)); allothers = find((e<=127) & (e>=-126)); if ~isempty(allothers), x(allothers) = pow2(1+f(allothers),e(allothers)); end negatives = find(neg); if ~isempty(negatives), x(negatives) = -x(negatives); end end