Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/linfitsvd.m @ 43:bc767aaa99a8
CVS Update
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 11:09:25 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% Linear fit with singular value decomposition % % INPUT: % - exps: is a N dimensional struct whose fields are fitdata % (experimental data), fitbasis (basis for the fit) and params (cell % array with the names of the parameters used in the experiment). % - groundexps: a M dim struct containing results from on ground experiments. % Fuields are: pos (parameter position number), value (on ground measurement % result) and err (experimental error on the on ground measurement). % - sThreshold it's a threshold for singular values. It is a % number, typically 1. It will remove singular values larger % than sThreshold which corresponds to removing svd parameters estimated % with an error larger than sThreshold. % % OUTPUT: % a: params values % Ca: fit covariance matrix for A % Corra: fit correlation matrix for A % Vu: is the complete conversion matrix % Cbu: is the new variables covariance matrix % Fbu: is the information matrix for the new variable % mse: is the fit Mean Square Error % dof: degrees of freedom for the global estimation % ppm: number of svd parameters per measurements, provides also the % number of independent combinations of parameters per each singular % measurement. The coefficients of the combinations are then stored in Vu % % 21-07-2009 L Ferraioli % CREATION % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % $Id: linfitsvd.m,v 1.8 2010/10/29 12:40:47 ingo Exp $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = linfitsvd(varargin) % get inputs if nargin == 1 % no ground experiment exps = varargin{1}; groundexps = []; remerr = false; elseif nargin == 2 exps = varargin{1}; if isnumeric(varargin{2}) sThreshold = varargin{2}; remerr = true; groundexps = []; else groundexps = varargin{2}; remerr = false; end elseif nargin == 3 exps = varargin{1}; groundexps = varargin{2}; sThreshold = varargin{3}; % admitted threshold for singular values remerr = true; if ~isnumeric(sThreshold) sThreshold = inf; end end % init collect results struct % init union matrices Vu = []; Fbu = []; wFbu = []; bu = []; % eCbu = []; Cbu = []; ppm = []; % number of svd parameters per measurements N = numel(exps); % run over input experiments for ii=1:N % get data of the experiments out of the input struct y = exps(ii).fitdata; X = exps(ii).fitbasis; % willing to work with columns if size(y,1)<size(y,2) y = y.'; end if size(X,1)<size(X,2) X = X.'; end % get svd of X [U,W,V] = svd(X,0); % removing zero singular values svals = diag(W); idx = svals==0; svals(idx) = []; % removing columns of U and V corresponding to zero svalues U(:,idx) = []; V(:,idx) = []; if remerr % Find params combinations with error larger than 1 idx = svals<sThreshold; svals(idx) = []; % removing columns of U and V corresponding to params combinations with % error larger than 1 U(:,idx) = []; V(:,idx) = []; end % Sanity check % if svals is empty you are going to gain no information from the % current data series if ~isempty(svals) % go with the fit % rebuild W W = diag(svals); % update ppm with the number of parameters for the given experiment ppm = [ppm; numel(svals)]; % get new basis for the fit K = U*W; % get expected covariance matrix for b, assuming white noise Fb = W*W; % information matrix for parameters b % get b params with errors, mse is the mean square error, Cb is the % covariance matrix of fitted b. It should be equal to eCb.*mse [b,stdxb,mseb,Cb] = lscov(K,y); % information matrix weighted for fit results Cb = inv(wFb) wFb = Fb./mseb; % add params from present experiment % get union matrices Vu = [Vu;V.']; Fbu = blkdiag(Fbu,Fb); wFbu = blkdiag(wFbu,wFb); Cbu = blkdiag(Cbu,Cb); bu = [bu;b]; else % no information, no fit % update ppm with the number of parameters for the given experiment ppm = [ppm; 0]; end end % insert values from on-ground measured parameters if applicable if nargin == 2 for jj = 1:numel(groundexps) % get values pos = groundexps(jj).pos; val = groundexps(jj).value; err = groundexps(jj).err; tV = zeros(1,size(Vu,2)); tV(1,pos) = 1; Vu = [Vu;tV]; bu = [bu;val]; Cbu = blkdiag(Cbu,err^2); Fbu = blkdiag(Fbu,1/(err^2)); wFbu = blkdiag(wFbu,1/(err^2)); ppm = [ppm; 1]; end end % get results on physical parameters, solve the system with proper weights a = lscov(Vu,bu,1./diag(Cbu)); % get params covariance Ca = inv(Vu'*wFbu*Vu); % get params correlation matrix Corra = Ca; for tt=1:size(Corra,1) for hh=1:size(Corra,2) Corra(tt,hh) = Ca(tt,hh)/(sqrt(Ca(tt,tt))*sqrt(Ca(hh,hh))); end end % get chi square assuming unitary variance white noise N = numel(exps); mse = 0; tL = 0; % run over input experiments for ii=1:N % get data of the experiments out of the input struct y = exps(ii).fitdata; X = exps(ii).fitbasis; mse = mse + sum((y - X*a).^2); tL = tL + numel(y); end dof = tL-numel(a); mse = mse./dof; end