% DETREND detrends the input analysis object using a polynomial of degree N.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DESCRIPTION: DETREND detrends the input analysis object using a% polynomial of degree N.%% CALL: b = detrend(a1,a2,a3,..., pl)%% INPUTS: aN - a list of analysis objects% pl - a parameter list%% OUTPUTS: b - array of analysis objects%% If the last input argument is a parameter list (plist) it is used.% The following parameters are recognised.%% NOTE: detrend uses two possible algorithms. A fast C-code implementation% is used for orders less than 11. If the order is higher than 10, then a% MATLAB code is used which is typically much slower. You can also force% the use of the MATLAB code using a plist option. When interpreting the% resulting coefficients, you must be clear which algorithm was used. For% the C-code algorithm, the coefficients are scaled from the original by% % z = 2.*ii/(n-1)-1;% % such that the functional form (for a three-coefficient example) that is% subtracted from the data can be recovered with:% % fitted_c = c.y(3).*z.^2 + c.y(2).*z + c.y(1); % % % The procinfo field of the output AOs is filled with the following key/value% pairs:%% 'COEFFS' - pest object with coefficients describing the subtracted trend function% Note that they correspond to physical trend coefficents% only if using the (slower) option 'M-FILE ONLY'. In the% case of using the C-code algorith, see the note above.%% <a href="matlab:utils.helper.displayMethodInfo('ao', 'detrend')">Parameters Description</a>%% VERSION: $Id: detrend.m,v 1.28 2011/04/08 08:56:11 hewitson Exp $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function varargout = detrend(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Decide on a deep copy or a modify bs = copy(as, nargout); % Combine plists pl = parse(pl, getDefaultPlist); % Unpack parameter list % Leaving the "N" for backwards compatibility order = find(pl, 'N', find(pl, 'order')); % Loop over analysis objects for jj = 1:numel(bs) % check data if ~isa(bs(jj).data, 'tsdata') warning('!!! This method only works with time-series at the moment. Skipping %s', ao_invars{jj}); else % detrend with polynomial if find(pl, 'M-FILE ONLY') if order >= 0 [y,c] = polydetrend(bs(jj).x, bs(jj).y, order); else y = bs(jj).y; c = []; end else try [y,c] = ltpda_polyreg(bs(jj).y, order); catch warning('!!! failed to execture ltpda_polyreg.mex. Using m-file call.'); if order >= 0 [y,c] = polydetrend(bs(jj).x, bs(jj).y, order); else y = bs(jj).y; c = []; end end end % set the values in the y and procinfo fields bs(jj).data.setY(y); % build a pest object with the coefficients units = unit.initObjectWithSize(1, order + 1); names = []; mdl = []; if order >= 0 for kk = 1:order+1 ll = order - kk + 1; units(kk) = bs(jj).yunits / simplify((unit(bs(jj).xunits)).^(ll)); names{kk}= ['P' num2str(ll)]; mdl = [mdl '+P' num2str(ll) '*t.^' num2str(ll) ' ']; end coeff = pest(plist(... 'names', names, ... 'y', c, ... 'dy', zeros(size(c)), ... 'yunits', units ... )); bs(jj).procinfo = plist('coeffs', coeff.setModels(smodel(mdl))); end % add name bs(jj).name = sprintf('detrend(%s)', bs(jj).name); % add history bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); % Clear the errors since they don't make sense anymore clearErrors(bs(jj)); end end % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; endend%--------------------------------------------------------------------------% Get Info Object%--------------------------------------------------------------------------function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: detrend.m,v 1.28 2011/04/08 08:56:11 hewitson Exp $', sets, pl);end%--------------------------------------------------------------------------% Get Default Plist%--------------------------------------------------------------------------function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; endfunction pl = buildplist() pl = plist(); % order p = param({'order',['The order of detrending:<ul>', ... '<li>-1 - no detrending</li>', ... '<li>0 - subtract mean</li>', ... '<li>1 - subtract linear fit</li>', ... '<li>N - subtract fit of polynomial, order N</li></ul>']}, {3, {-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, paramValue.SINGLE}); pl.append(p); % m-file only p = param({'M-FILE ONLY','Using SLOWER m-file call'}, paramValue.FALSE_TRUE); pl.append(p);endfunction [y,p] = polydetrend(varargin) % POLYDETREND detrends the input data vector with a polynomial. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: POLYDETREND detrends the input data vector with a % polynomial. % % CALL: [y,p] = polydetrend(x,order); % % INPUTS: x - vector of x values % order - order of polynomial to fit and subtract % % OUTPUTS: y - detrended data % p - coefficients fitted to the trend function % % VERSION: $Id: detrend.m,v 1.28 2011/04/08 08:56:11 hewitson Exp $ % % HISTORY: 30-05-07 M Hewitson % Creation % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin == 2 x = varargin{1}; order = varargin{2}; t = [1:length(x)].'; elseif nargin == 3 t = varargin{1}; x = varargin{2}; order = varargin{3}; else error('### incorrect inputs.'); end % fit polynomial p = polyfit(t, x, order); % make polynomial series py = polyval(p, t); % detrend y = x - py;end% END