function output = convertComString(varargin)% replaceString changes the input string accordingly to a predefined list of rules%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DESCRIPTION: CONVERTCOMSTRING hanges the input string accordingly to a% predefined list of rules, to convert between MATLAB, MUPAD% and MATHEMATICA command string syntax.% This supports conversions: MATLAB <-> MUPAD% MATLAB <-> MATHEMATICA%% CALL: output = convertComString('string', conversion);% % PARAMETERS:% conversion A string defining the conversion:% - 'ToSymbolic' MATLAB --> Symbolic (MUPAD)% - 'ToMathematica' MATLAB --> MATHEMATICA% - 'FromSymbolic' MUPAD (Symbolic) --> MATLAB% - 'FromMathematica' MATHEMATICA --> MATLAB%% EXAMPLES:% output = convertComString('(a.*b).*sin(pi)','ToMathematica')% output = convertComString('Sin[3*Pi]/Cos[Pi]','FromMathematica')% output = convertComString('(a.*b).*sin(pi)','ToSymbolic')% output = convertComString('sin(3*PI)/cos(PI)','FromSymbolic')% output = convertComString('PI*sin(3*PI)/cos(PI)','FromSymbolic')% % VERSION: $Id: convertComString.m,v 1.6 2010/03/20 14:50:49 hewitson Exp $% Alpha version%% HISTORY: 27-05-2009 N Tateo% Creation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%output = varargin{1};direct = varargin{2};% Generic substitutions (tipically the bidirectional ones, such as unique% combinations of chars) are defined in the following list.% Perticular substitutions (such as the imaginary 'i', but not the 'i'% inside a string) are performed preliminarly in the preliminaryCheck% function.% Rules to/from MATHEMATICA:% These rules are bidirectional;mathematicaRule = {... './' , '/' ; ... '.*' , '*' ; ... '.^' , '^' ; ... };% Rules to/from MUPAD:% These rules are bidirectional;mupadRule = {... './' , '/' ; ... '.*' , '*' ; ... '.^' , '^' ; ... '1I' , 'I' ; ... };%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%switch lower(direct) case 'tosymbolic' rule = mupadRule; output = preliminaryCheckSymb(output,1); direction = 1; case 'tomathematica' rule = mathematicaRule; output = preliminaryCheckMath(output,1); direction = 1; case 'fromsymbolic' rule = mupadRule; output = preliminaryCheckSymb(output,2); direction = 0; case 'frommathematica' rule = mathematicaRule; output = preliminaryCheckMath(output,2); direction = 0; otherwise error('*** ''conversion'' parameter not recognized.')end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Now performs the standard substitution, according to the rule matrix:if direction % from Matlab for ii=1:size(rule,1) output = strrep(output,rule{ii,1},rule{ii,2}); output = regexprep(output, '([0-9]+)I', '$1*I'); endelse % to Matlab for ii=1:size(rule,1) output = strrep(output,rule{ii,2},rule{ii,1}); endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function myout = preliminaryCheckMath(mystr,mynumb) % Performs a list of complex substitutions: % - search for function names and substitute the corresponding % parentheses; for example, sin(...) --> Sin[...] % - search for e (as in 4E5) and converts in 10^ . % - search for i (as in 2+4i) and converts in I. % - search for pi (not inside strings) and converts in Pi. % % Parameter: mynumb = 1 MATLAB --> MATHEMATICA, % = 2 MATHEMATICA --> MATLAB % if mynumb ==1 % MATLAB --> MATHEMATICA % 'e' substitution: idx = regexp(mystr, '\de\d') + 1; for m = numel(idx):-1:1, mystr = [mystr(1:idx(m)-1) '10^' mystr(idx(m)+1:end)]; end % 'i' substitution: idx = cell2mat(regexp(mystr, {'\di','\*i'})) + 1; for m = numel(idx):-1:1, mystr = [mystr(1:idx(m)-1) '*I' mystr(idx(m)+1:end)]; end % 'pi' substitution: idx = regexp(mystr,'\Wpi') + 1; for m = numel(idx):-1:1, mystr(idx(m)) = 'P'; end else % MATHEMATICA --> MATLAB % 'i' substitution: idx = cell2mat(regexp(mystr, {'\dI','\*I'})) + 1; for m = numel(idx):-1:1, mystr = [mystr(1:idx(m)-1) '*i' mystr(idx(m)+1:end)]; end % 'pi' substitution: idx = regexp(mystr,'\WPi') + 1; for m = numel(idx):-1:1, mystr(idx(m)) = 'p'; end end funcList = {'sin','cos','exp','sqrt','abs'; ... 'Sin','Cos','Exp','Sqrt','Abs'}; if mynumb==1 par = {'(',')' ; '[',']'}; else par = {'[',']' ; '(',')'}; end for j=1:size(funcList,2) idx = strfind(mystr,funcList{mynumb,j}); if ~isempty(idx) for jj=numel(idx):-1:1 startIdx = idx(jj)+numel(funcList{mynumb,j}); % this is the index of the opening parenthesys k = startIdx+1; openPar = 0; while k~=0 if k>numel(mystr), endIdx = k-1; break; end if mystr(k)==par{1,2} && openPar == 0 endIdx = k; break elseif mystr(k)==par{1,2} && openPar == 1 openPar = openPar-1; elseif mystr(k)==par{1,1} openPar = openPar+1; end k = k+1; end % now startIdx e endIdx are the indexes of the parentheses mystr(startIdx)= par{2,1}; mystr(endIdx) = par{2,2}; temp = funcList; temp(mynumb,:) = []; mystr(idx(jj):idx(jj)+numel(temp{j})-1) = temp{j}; end end end myout = mystr; end function myout = preliminaryCheckSymb(mystr,mynumb) % Performs a list of complex substitutions: % - search for i (as in 2+4i) and converts in I. % - search for pi (not inside strings) and converts in Pi. % % Parameter: mynumb = 1 MATLAB --> Symbolic (MUPAD), % = 2 Symbolic (MUPAD) --> MATLAB % if mynumb ==1 % MATLAB --> Symbolic (MUPAD) % 'i' substitution: idx = cell2mat(regexp(mystr, {'\di','\*i'})) + 1; for m = numel(idx):-1:1, mystr(idx(m)) = 'I'; end % 'pi' substitution: idx = regexp(mystr,'\Wpi') + 1; for m = numel(idx):-1:1, mystr(idx(m)) = 'P'; mystr(idx(m)+1) = 'I';end else % Symbolic (MUPAD) --> MATLAB % 'i' substitution: idx = cell2mat(regexp(mystr, {'\dI','\*I'})) + 1; % for m = numel(idx):-1:1, mystr = [mystr(1:idx-1) '*i' mystr(idx+1:end)]; end mystr(idx)='i'; % 'pi' substitution: idx = regexp(mystr,'PI\W*'); for m = numel(idx):-1:1, mystr(idx(m)) = 'p'; mystr(idx(m)+1) = 'i';end end myout = mystr; endend