Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/autodfit.m @ 26:ce4df2e95a55 database-connection-manager
Remove LTPDARepositoryManager initialization
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% AUTODFIT perform a fitting loop to identify model order and parameters. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DESCRIPTION: % % Perform a fitting loop to automatically identify model order and % parameters in z-domain. Model identification is performed by 'dtfit' % function. Output is a z-domain model expanded in partial fractions: % % z*r1 z*rN % f(s) = ------- + ... + ------- + d % z - p1 z - pN % % The function attempt to perform first the identification of a model % with d = 0, then if the operation do not succeed, it try the % identification with d different from zero. % Identification loop stop when the stop condition is reached. Six % stop criteria are available: % % Mean Squared Error % Check if the normalized mean squared error is lower than the value % specified in lrscond: % mse < 10^(-1*lrsvarcond) % % Mean Squared Error and variation % Check if the normalized mean squared error is lower than the value specified in % lrscond and that the relative variation of the mean squared error is lower % than the value provided. % Checking algorithm is: % mse < 10^(-1*lrsvarcond) % Dmse < 10^(-1*msevar) % % Log Residuals difference % Check if the minimum of the logarithmic difference between data and % residuals is larger than a specified value. ie. if the conditioning % value is 2, the function ensures that the difference between data and % residuals is at lest 2 order of magnitude lower than data itsleves. % Checking algorithm is: % lsr = log10(abs(y))-log10(abs(rdl)); % min(lsr) > lrscond; % % Log Residuals difference and Mean Squared Error Variation % Check if the log difference between data and residuals is in % larger than the value indicated in lsrcond and that the relative variation of % the mean squared error is lower than 10^(-1*msevar). % Checking algorithm is: % lsr = log10(abs(y))-log10(abs(rdl)); % (lsr > lrscond) && (mse < 10^(-1*lrsvarcond)); % % Residuals Spectral Flatness % In case of a fit on noisy data, the residuals from a good fit are % expected to be as much as possible similar to a white noise. This % property can be used to test the accuracy of a fit procedure. In % particular it can be tested that the spectral flatness coefficient of % the residuals is larger than a certain qiantity sf such that 0<sf<1. % % Residuals Spectral Flatness and root mean squared error variation % Check if the spectral flatness coefficient of the residuals is % larger than a certain qiantity sf such that 0<sf<1 and that the % relative variation of the mean squared error is lower than % 10^(-1*msevar). % % Once the loop iteration stops the parameters giving best Mean Square % Error are output. % % CALL: % % [res,poles,dterm,mresp,rdl,mse] = autodfit(y,f,fs,params) % % INPUT: % % - y are the data to be fitted. They represent the frequency response % of a certain process. % - f is the frequency vector in Hz % - fs is the sampling frequency in Hz % - params is a struct containing identification parameters % % params.spolesopt = 0 --> use external starting poles % params.spolesopt = 1 --> use real starting poles % params.spolesopt = 2 --> generates complex conjugates poles of the % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+1). % params.spolesopt = 3 --> generates complex conjugates poles of the % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+2). % Default option. % % params.extpoles = [] --> a vector with the starting poles. % Providing a fixed set of starting poles fixes the function order so % params.minorder and params.maxorder will be internally set to the % poles vecto length. % % params.fullauto = 0 --> Perform a fitting loop as far as the number % of iteration reach Nmaxiter. The order of the fitting function will % be that specified in params.minorder. If params.dterm is setted to % 1 the function will fit only with direct term. % params.fullauto = 1 --> Parform a full automatic search for the % transfer function order. The fitting procedure will stop when the % stopping condition defined in params.ctp is satisfied. Default % value. % % params.Nmaxiter = # --> Number of maximum iteration per model order % parformed. Default is 50. % % params.minorder = # --> Minimum model trial order. Default is 2. % % params.maxorder = # --> Maximum model trial order. Default is 25. % % params.weightparam = 0 --> use external weights % params.weightparam = 1 --> fit with equal weights (one) for each % data point. % params.weightparam = 2 --> weight fit with the inverse of absolute % value of data. Default value. % params.weightparam = 3 --> weight fit with the square root of the % inverse of absolute value of data. % params.weightparam = 4 --> weight fit with inverse of the square % mean spread % % params.extweights = [] --> A vector of externally provided weights. % It has to be of the same size of input data. % % params.plot = 0 --> no plot during fit iteration % params.plot = 1 --> plot results at each fitting steps. default % value. % % params.ctp = 'chival' --> check if the value of the Mean Squared % Error is lower than 10^(-1*lsrcond). % params.ctp = 'chivar' --> check if the value of the Mean Squared % Error is lower than 10^(-1*lsrcond) and if the relative variation of mean % squared error is lower than 10^(-1*msevar). % params.ctp = 'lrs' --> check if the log difference between data and % residuals is point by point larger than the value indicated in % lsrcond. This mean that residuals are lsrcond order of magnitudes % lower than data. % params.ctp = 'lrsmse' --> check if the log difference between data % and residuals is larger than the value indicated in lsrcond and if % the relative variation of root mean squared error is lower than % 10^(-1*msevar). % params.ctp = 'rft' --> check that the residuals spectral flatness % coefficient is lerger than the value provided in lsrcond. In this % case lsrcond must be such that 0<lsrcond<1. % params.ctp = 'rftmse' --> check that the residuals spectral flatness % coefficient is lerger than the value provided in lsrcond and if % the relative variation of root mean squared error is lower than % 10^(-1*msevar). In this case lsrcond must be such that % 0<lsrcond<1. % % params.lrscond = # --> set conditioning value for mean squared % error (params.ctp = 'chival' and params.ctp = 'chivar') or set % conditioning value for point to point log residuals difference % (params.ctp = 'lsr' and params.ctp = 'lrsmse') or set conditioning % value for residuals spectral flateness (params.ctp = 'rft' and % params.ctp = 'rftmse'). In the last case params.lrscond must be set % to 0<lrscond<1. Default is 2. See help for stopfit.m for further % remarks. % % params.msevar = # --> set conditioning value for mean squared % error variation. This allow to check that the variation of % mean squared error is lower than 10^(-1*msevar).Default is 7. See % help for stopfit.m for further remarks. % % params.stabfit = 0 --> Fit without forcing poles stability. Default % value. % params.stabfit = 1 --> Fit forcing poles stability % % params.dterm = 0 --> Try to fit without direct term % params.dterm = 1 --> Try to fit with and without direct term % % params.spy = 0 --> Do not display the iteration progression % params.spy = 1 --> Display the iteration progression % % OUTPUT: % % - res is the vector with model residues r % - poles is the vector with model poles p % - dterm is the model direct term d % - mresp is the model frequency response calculated at the input % frequencies % - rdl are the residuals between data and model, at the input % frequencies % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % VERSION: $Id: autodfit.m,v 1.25 2010/01/27 17:56:11 luigi Exp $ % % HISTORY: 08-10-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [res,poles,dterm,mresp,rdl,mse] = autodfit(y,f,fs,params) utils.helper.msg(utils.const.msg.MNAME, 'running %s/%s', mfilename('class'), mfilename); % Default input struct defaultparams = struct('spolesopt',1, 'Nmaxiter',30, 'minorder',2,... 'maxorder',25, 'weightparam',1, 'plot',1,... 'ctp','chival','lrscond',2,'msevar',2,... 'stabfit',0,'dterm',0,'spy',0,'fullauto',1,'extweights', [],... 'extpoles', []); names = {'spolesopt','Nmaxiter','minorder',... 'maxorder','weightparam','plot',... 'ctp','lrscond','msevar',... 'stabfit','dterm','spy','fullauto','extweights','extpoles'}; % collecting input and default params if ~isempty(params) for jj=1:length(names) if isfield(params, names(jj)) && ~isempty(params.(names{1,jj})) defaultparams.(names{1,jj}) = params.(names{1,jj}); end end end % collecting input params spolesopt = defaultparams.spolesopt; Nmaxiter = defaultparams.Nmaxiter; minorder = defaultparams.minorder; maxorder = defaultparams.maxorder; weightparam = defaultparams.weightparam; check = defaultparams.plot; stabfit = defaultparams.stabfit; ctp = defaultparams.ctp; lrscond = defaultparams.lrscond; msevar = defaultparams.msevar; idt = defaultparams.dterm; spy = defaultparams.spy; autosearch = defaultparams.fullauto; extweights = defaultparams.extweights; extpoles = defaultparams.extpoles; if check == 1 fitin.plot = 1; fitin.ploth = figure; % opening new figure window else fitin.plot = 0; end if stabfit % fit with stable poles only fitin.stable = 1; else % fit without restrictions fitin.stable = 0; end % Colum vector are preferred [a,b] = size(y); if a < b % shifting to column y = y.'; end [Nx,Ny] = size(y); [a,b] = size(f); if a < b % shifting to column f = f.'; end % in case of externally provided poles if ~isempty(extpoles) spolesopt = 0; end if spolesopt == 0 % in case of external poles % Colum vector are preferred [a,b] = size(extpoles); if a < b % shifting to column extpoles = extpoles.'; end [Npls,b] = size(extpoles); minorder = Npls; maxorder = Npls; end if weightparam == 0 % in case of external weights % Colum vector are preferred [a,b] = size(extweights); if a < b % shifting to column extweights = extweights.'; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Importing package import utils.math.* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Fitting % decide to fit with or without direct term according to the input % options if autosearch if idt % full auto identification dterm_off = 1; dterm_on = 1; else % auto ident without dterm dterm_off = 1; dterm_on = 0; end else if idt % fit only with dterm dterm_off = 0; dterm_on = 1; else % fit without dterm dterm_off = 1; dterm_on = 0; end end ext = zeros(Ny,1); % starting banana mse cmse = inf; bmse = inf; if dterm_off utils.helper.msg(utils.const.msg.PROC1, ' Try fitting without direct term ') fitin.dterm = 0; fitin.fs = fs; % Weighting coefficients if weightparam == 0 % using external weigths utils.helper.msg(utils.const.msg.PROC1, ' Using external weights... ') weight = extweights; else weight = utils.math.wfun(y,weightparam); end if autosearch order_vect = minorder:maxorder; else order_vect = minorder:minorder; end for N = order_vect if spy utils.helper.msg(utils.const.msg.PROC1, ['Actual_Order' num2str(N)]) end % Starting poles if spolesopt == 0 % in case of external poles utils.helper.msg(utils.const.msg.PROC1, ' Using external poles... ') spoles = extpoles; else % internally calculated starting poles pparams = struct('spolesopt',spolesopt, 'type','DISC', 'pamp', 0.98); spoles = utils.math.startpoles(N,f,pparams); end % Fitting M = 3*N; if M > Nmaxiter M = Nmaxiter; elseif not(autosearch) M = Nmaxiter; end clear mlr for hh = 1:M [res,spoles,dterm,mresp,rdl,mse] = utils.math.vdfit(y,f,spoles,weight,fitin); % Fitting % decide to store the best result based on mse %fprintf('iteration = %d, order = %d \n',hh,N) if norm(mse)<cmse %fprintf('nice job \n') bres = res; bpoles = spoles; bdterm = dterm; bmresp = mresp; brdl = rdl; bmse = mse; cmse = norm(mse); end if spy utils.helper.msg(utils.const.msg.PROC1, ['Iter' num2str(hh)]) end % ext = zeros(Ny,1); if autosearch for kk = 1:Ny % Stop condition checking mlr(hh,kk) = mse(:,kk); % decide between stop conditioning if strcmpi(ctp,'lrs') yd = y(:,kk); % input data elseif strcmpi(ctp,'lrsmse') yd = y(:,kk); % input data elseif strcmpi(ctp,'rft') yd = mresp(:,kk); % model response elseif strcmpi(ctp,'rftmse') yd = mresp(:,kk); % model response elseif strcmpi(ctp,'chival') yd = y(:,kk); % model response elseif strcmpi(ctp,'chivar') yd = y(:,kk); % model response else error('!!! Unable to identify appropiate stop condition. See function help for admitted values'); end [next,msg] = utils.math.stopfit(yd,rdl(:,kk),mlr(:,kk),ctp,lrscond,msevar); ext(kk,1) = next; end else for kk = 1:Ny % storing mse progression mlr(hh,kk) = mse(:,kk); end end if all(ext) utils.helper.msg(utils.const.msg.PROC1, msg) break end end if all(ext) break end end end if dterm_on if ~all(ext) % fit with direct term only if the fit without does not give acceptable results (in full auto mode) utils.helper.msg(utils.const.msg.PROC1, ' Try fitting with direct term ') fitin.dterm = 1; if autosearch order_vect = minorder:maxorder; else order_vect = minorder:minorder; end for N = order_vect if spy utils.helper.msg(utils.const.msg.PROC1, ['Actual_Order' num2str(N)]) end % Starting poles if spolesopt == 0 % in case of external poles utils.helper.msg(utils.const.msg.PROC1, ' Using external poles... ') spoles = extpoles; else % internally calculated starting poles pparams = struct('spolesopt',spolesopt, 'type','DISC', 'pamp', 0.98); spoles = utils.math.startpoles(N,f,pparams); end % Fitting M = 3*N; if M > Nmaxiter M = Nmaxiter; elseif not(autosearch) M = Nmaxiter; end clear mlr for hh = 1:M [res,spoles,dterm,mresp,rdl,mse] = utils.math.vdfit(y,f,spoles,weight,fitin); % Fitting % decide to store the best result based on mse if norm(mse)<cmse bres = res; bpoles = spoles; bdterm = dterm; bmresp = mresp; brdl = rdl; bmse = mse; cmse = norm(mse); end if spy utils.helper.msg(utils.const.msg.PROC1, ['Iter' num2str(hh)]) end ext = zeros(Ny,1); if autosearch for kk = 1:Ny % Stop condition checking mlr(hh,kk) = mse(:,kk); % decide between stop conditioning if strcmpi(ctp,'lrs') yd = y(:,kk); % input data elseif strcmpi(ctp,'lrsmse') yd = y(:,kk); % input data elseif strcmpi(ctp,'rft') yd = mresp(:,kk); % model response elseif strcmpi(ctp,'rftmse') yd = mresp(:,kk); % model response elseif strcmpi(ctp,'chival') yd = y(:,kk); % model response elseif strcmpi(ctp,'chivar') yd = y(:,kk); % model response else error('!!! Unable to identify appropiate stop condition. See function help for admitted values'); end [next,msg] = utils.math.stopfit(yd,rdl(:,kk),mlr(:,kk),ctp,lrscond,msevar); ext(kk,1) = next; end else for kk = 1:Ny % storing mse progression mlr(hh,kk) = mse(:,kk); end end if all(ext) utils.helper.msg(utils.const.msg.PROC1, msg) break end end if all(ext) break end end end end poles = bpoles; clear mse mse = mlr(:,:); res = bres; dterm = bdterm; mresp = bmresp; rdl = brdl; mse = bmse; if all(ext) == 0 utils.helper.msg(utils.const.msg.PROC1, ' Fitting iteration completed without reaching the prescribed accuracy. Try changing Nmaxiter or maxorder or accuracy requirements ') else utils.helper.msg(utils.const.msg.PROC1, ' Fitting iteration completed successfully ') end