Mercurial > hg > ltpda
view m-toolbox/classes/@ssm/PSD.m @ 26:ce4df2e95a55 database-connection-manager
Remove LTPDARepositoryManager initialization
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% PSD computes the output theoretical CPSD shape with given inputs. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: PSD computes the output theoretical CPSD shape with given inputs. % Unlike CPSD, it returns individual contributions and takes % input vectors of objects (instead of square matrices) % % CALL: [mat_outSum, mat_out] = PSD(sys, pl) % % INPUTS: % sys - (array of) ssm object % % OUTPUTS: % mat_outSummed - contains specified returned aos, noise is % summed over all the specified input noises % mat_out - contains specified returned aos % % <a href="matlab:utils.helper.displayMethodInfo('ssm', 'PSD')">Parameters Description</a> % % VERSION: $Id: PSD.m,v 1.15 2011/04/17 21:28:05 adrien Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = PSD(varargin) %% starting initial checks % use the caller is method flag callerIsMethod = utils.helper.callerIsMethod; % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all SSMs and plists [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names); [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist'); if ~isempty(rest) pl = combine(pl, plist(rest{:})); end pl = combine(pl, getDefaultPlist()); %%% Internal call: Only one object + don't look for a plist internal = strcmp(varargin{end}, 'internal'); %% begin function body %% retrieve system infos if numel(sys)~=1 error('noisespectrum needs exactly one ssm as an input') end if ~sys.isnumerical error(['error because system ',sys.name,' is not numerical']); end if ~sys.isStable error('input ssm is not stable!') end if sys.timestep==0 timestep = 1; else timestep = sys.timestep; end if ~internal inhist = sys.hist; end %% modifying system's ordering if find(pl, 'reorganize') sys = reorganize(sys, pl, 'set', 'for psd', 'internal', 'internal'); end %% collecting functions i/o data aos_in = find(pl, 'aos'); PZ_in = find(pl, 'PZmodels'); cov_in = find(pl, 'variance'); cpsd_in = find(pl, 'PSD'); noise_mat = [cov_in ; cpsd_in/(timestep*2)]; %% getting system's i/o sizes inputSizes = sys.inputsizes; outputSizes = sys.outputsizes; %#ok<NASGU> Naos_in = inputSizes(1); Nnoise = inputSizes(2); NPZmodels = inputSizes(3); %% retrieving frequency vector if isempty(Naos_in)==0 f1 = find(pl,'f1'); f2 = find(pl,'f2'); NFreqs = find(pl,'nf'); if isempty(f1) || isempty(f2)|| isempty(NFreqs) error('### Please specify frequency vector a start and stop frequency .'); else freqs = 10.^linspace(log10(f1), log10(f2), NFreqs); end else freqs = aos_in(1).x; end %% checking frequency vector for i=2:numel(aos_in) if ~isequal(freqs,aos_in(i).x) error('there exist different frequency vectors'); end end %% reshape pzmodels and aos for input cross-spectra if numel(PZ_in)==NPZmodels PZdata = zeros(NPZmodels,NFreqs); for i=1:NPZmodels a = resp(PZ_in(i), freqs); PZdata(i,:) = reshape(a.y,[1,NFreqs]) ; end else error('Wrong size for field PZ_in') end if numel(aos_in)==Naos_in AOdata = zeros(Naos_in,NFreqs); for i=1:Naos_in AOdata(i,:) = reshape(aos_in(i).y,[1,NFreqs]) ; end else error('Wrong size for field aos_in') end %% SSM Transfer function [a, b, c, d, Ts, InputName, StateName, OutputName,... inputvarunits, ssvarunits, outputvarunits] = double(sys); %#ok<ASGLU> resps = ssm.doBode(a, b, c, d, 2*pi*freqs, Ts); Noutputs = numel(OutputName); %% power for each frequency with SVD computation Result = zeros(Noutputs, Nnoise+Naos_in+NPZmodels, NFreqs); for ff=1:NFreqs for ii = 1:(Nnoise+Naos_in+NPZmodels) AmpWhiteNoise = zeros(1,Nnoise); AmpAO = zeros(1, Naos_in); AmpPZ = zeros(1,NPZmodels); if ii<Nnoise+1, %% contribution from white noise if noise_mat(ii)<0 error('input PSD is not positive!') end AmpWhiteNoise(ii) = noise_mat(ii)^0.5; elseif ii<Nnoise+Naos_in+1 %% contribution from aos i_input2 = ii-Nnoise; if AOdata(i_input2,ff)<0 error('input PSD is not positive!') end AmpAO(i_input2) = AOdata(i_input2,ff)^0.5; else %% contribution from PZmodels i_input2 = ii-Nnoise-Naos_in; if PZdata(i_input2,ff)<0 error('input PSD is not positive!') end AmpPZ(i_input2) = PZdata(i_input2,ff)^0.5; end %% computing CPSD Amp = diag([AmpAO; AmpWhiteNoise; AmpPZ]); RespLoc = squeeze(resps(:,:,ff)); noise = RespLoc * Amp * (RespLoc*Amp)'; Result(:,ii,ff) = diag( real(noise) * (2*timestep) ); % 2 correction added here end end %% saving in aos if nargout ~= 1; ao_out = ao.initObjectWithSize(Noutputs, Nnoise+Naos_in+NPZmodels); end ao_outSum = ao.initObjectWithSize(Noutputs, 1); for oo=1:Noutputs %% individual inputs if nargout ~= 1; for ii=1:(Nnoise+Naos_in+NPZmodels) ao_out(oo,ii).setData(fsdata(freqs, squeeze(Result(oo,ii,:)))); ao_out(oo,ii).setName( ['PSD of ' , OutputName{oo} ' due to ' InputName{ii}]); ao_out(oo,ii).setXunits('Hz'); ao_out(oo,ii).setYunits(outputvarunits(oo)^2/unit('Hz')); ao_out(oo,ii).setDescription( ['PSD of ' , OutputName{oo} ' due to ' InputName{ii}]); end end %% sum of all inputs ao_outSum(oo,1).setData(fsdata(freqs, sum(squeeze(Result(oo,:,:)),1) )); ao_outSum(oo,1).setName( ['PSD of ' , OutputName{oo} ' due to all contributions']); ao_outSum(oo,1).setXunits('Hz'); ao_outSum(oo,1).setYunits(outputvarunits(oo)^2/unit('Hz')); ao_outSum(oo,1).setDescription( ['PSD of ' , OutputName{oo} ' due to all contributions']); end %% construct output matrix object if nargout ~= 1; out = matrix(ao_out); end outSum = matrix(ao_outSum); if callerIsMethod % do nothing else myinfo = getInfo('None'); if nargout ~= 1; out.addHistory(myinfo, pl , ssm_invars(1), inhist ); end outSum.addHistory(myinfo, pl , ssm_invars(1), inhist ); end %% Set output depending on nargout if nargout == 1; varargout = {outSum}; elseif nargout == 2; varargout = {outSum out }; elseif nargout == 0; iplot(ao_outSum, ao_out); else error('Wrong number of outputs') end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: PSD.m,v 1.15 2011/04/17 21:28:05 adrien Exp $', sets, pl); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function pl = getDefaultPlist() pl = ssm.getInfo('reorganize', 'for PSD').plists; pl.remove('set'); p = param({'variance', 'The variance vector of this noise between input ports for the <i>time-discrete</i> noise model. '}, []); pl.append(p); p = param({'PSD', 'The one sided psd vector of the white noise between input ports.'}, []); pl.append(p); p = param({'aos', 'A vector of input PSD AOs, The spectrum of this noise between input ports for the <i>time-continuous</i> noise model.'}, ao.initObjectWithSize(1,0)); pl.append(p); p = param({'PZmodels', 'vector of noise shape filters for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1))); pl.append(p); p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE); pl.append(p); p = param({'f2', 'The maximum frequency. Default is Nyquist or 1Hz.'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = param({'f1', 'The minimum frequency. Default is f2*1e-5.'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = param({'nf', 'The number of frequency bins. Frequencies are scale logarithmically'}, paramValue.DOUBLE_VALUE(200)); pl.append(p); end