Mercurial > hg > ltpda
view m-toolbox/classes/@ao/corr.m @ 20:d58813ab1b92 database-connection-manager
Update ltpda_uo.submit
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% CORR estimate linear correlation coefficients. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: CORR estimate linear correlation coefficients. % % The method returns a P-by-P matrix containing the pairwise % linear correlation coefficient between each pair of columns % in the N-by-P matrix X formed from the length-N vectors of % the P input AOs. The coefficients are calculated using % Pearson's product-moment method. % % CALL: >> c = corr(a,b) % >> c = corr(a,b,c,...) % % INPUTS: a,b,c,... - input analysis objects % % OUTPUTS: c - output analysis object containing the correlation matrix. % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'corr')">Parameters Description</a> % % VERSION: $Id: corr.m,v 1.9 2011/04/08 08:56:18 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = corr(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); if nargout == 0 error('### corr cannot be used as a modifier. Please give an output variable.'); end if numel(as) < 2 error('### corr requires at least two input AOs to work.'); end % Convolute the data smat = []; inunits = unit; name = ''; desc = ''; for jj=1:numel(as) smat = [smat as(jj).data.getY]; inunits = inunits .* as(jj).data.yunits; name = strcat(name, [',' ao_invars{jj}]); desc = strcat(desc, [' ' as(jj).description]); end desc = strtrim(desc); % compute the sample correlation using Pearson's product-moment coefficient Cv = cov(smat); C = zeros(size(Cv)); for ii=1:size(Cv, 1) for kk=1:size(Cv,2) C(ii,kk) = Cv(ii,kk) ./ (sqrt(Cv(ii,ii))*sqrt(Cv(kk,kk))); end end bs = ao(cdata(C)); bs.name = sprintf('corr(%s)', name(2:end)); bs.description = desc; bs.data.setYunits(inunits); bs.addHistory(getInfo('None'), getDefaultPlist, ao_invars, [as(:).hist]); % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pls = []; else sets = {'Default'}; pls = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: corr.m,v 1.9 2011/04/08 08:56:18 hewitson Exp $', sets, pls); ii.setModifier(false); ii.setArgsmin(2); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl_default = buildplist() pl_default = plist.EMPTY_PLIST; end