Mercurial > hg > ltpda
view m-toolbox/classes/@ao/hist.m @ 20:d58813ab1b92 database-connection-manager
Update ltpda_uo.submit
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% HIST overloads the histogram function (hist) of MATLAB for Analysis Objects. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: HIST overloads the histogram function (hist) of MATLAB for % Analysis Objects. % % CALL: b = hist(a) % b = hist(a, pl) % % INPUTS: a - input analysis object(s) % pl - a parameter list % % OUTPUTS: b - xydata type analysis object(s) containing the % histogrammed data % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'hist')">Parameters Description</a> % % WARNING: the '.' method of calling hist() doesn't work since AOs have a % property called 'hist'. Use the standard function call instead: % % >> a.hist % returns the history object and doesn't call ao/hist % >> hist(a) % calls ao/hist % % VERSION: $Id: hist.m,v 1.42 2011/04/08 08:56:12 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = hist(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); [pli, pl_invars, rest] = utils.helper.collect_objects(varargin(:), 'plist', in_names); pl = parse(pli, getDefaultPlist('Number of bins')); normalize = utils.prog.yes2true(find(pl, 'norm')); % Decide on a deep copy or a modify bs = copy(as, nargout); % Get parameters N = find(pl, 'N'); X = find(pl, 'X'); %---------------- Loop over input AOs % start looping for jj=1:numel(bs) % Histogram this data if isempty(X) [n,x] = hist(bs(jj).data.y, N); else [n,x] = hist(bs(jj).data.y, X); end % Keep the data shape of the input AO if size(bs(jj).data.y, 1) ~= 1 x = x.'; n = n.'; end % In the case of equally spaced bins, introduce normalization if normalize && isempty(X) dx = mean(diff(x)); n = n / sum(n) / dx; yunits = (bs(jj).data.yunits)^(-1); dy = sqrt(n); else yunits = 'Count'; dy = sqrt(n); end % make a new xydata object xy = xydata(x, n); xy.setXunits(bs(jj).data.yunits); xy.setYunits(yunits); xy.setDy(dy); % make output analysis object bs(jj).data = xy; % name for this object bs(jj).name = sprintf('hist(%s)', ao_invars{jj}); % Add history bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); % Add to outputs % clear errors bs(jj).clearErrors; end % end of AO loop % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pls = []; elseif nargin == 1 && ~isempty(varargin{1}) && ischar(varargin{1}) sets{1} = varargin{1}; pls = getDefaultPlist(sets{1}); else sets = {'Number Of Bins', 'Bin Centres'}; pls = []; for kk=1:numel(sets) pls = [pls getDefaultPlist(sets{kk})]; end end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: hist.m,v 1.42 2011/04/08 08:56:12 hewitson Exp $', sets, pls); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist(set) persistent pl; persistent lastset; if exist('pl', 'var')==0 || isempty(pl) || ~strcmp(lastset, set) pl = buildplist(set); lastset = set; end plout = pl; end function plo = buildplist(set) switch lower(set) case 'number of bins' plo = plist; % N number of bins p = param({'N', ['The number of bins to compute the histogram on.']}, {1, {10}, paramValue.OPTIONAL}); plo.append(p); % normalized output p = param({'norm', ['Normalized output. If set to true, it will give the output comparable <br>', ... 'to the normal distrubution PDF. <br>']}, paramValue.FALSE_TRUE); plo.append(p); case 'bin centres' plo = plist({'X', 'A vector of bin centers.'}, paramValue.EMPTY_DOUBLE); otherwise error('### Unknown default plist for the set [%s]', set); end end