Mercurial > hg > ltpda
view m-toolbox/classes/@ao/interpmissing.m @ 20:d58813ab1b92 database-connection-manager
Update ltpda_uo.submit
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% INTERPMISSING interpolate missing samples in a time-series. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % INTERPMISSING interpolate missing samples in a time-series. Missing samples % are identified as being those where the time-span between one % sample and the next is larger than d/fs where d is a % tolerance value. Missing data is then placed in the gap in % steps of 1/fs. Obviously this is only really correct for % evenly sampled time-series. % % CALL: bs = interpmissing(as) % % INPUTS: as - array of analysis objects % pl - parameter list (see below) % % OUTPUTS: bs - array of analysis objects, one for each input % % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'interpmissing')">Parameters Description</a> % % VERSION: $Id: interpmissing.m,v 1.30 2011/04/08 08:56:16 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = interpmissing(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Decide on a deep copy or a modify bs = copy(as, nargout); % Combine plists pl = parse(pl, getDefaultPlist); % Get tolerance dtol = find(pl, 'd'); % Get only tsdata AOs for j=1:numel(bs) if isa(bs(j).data, 'tsdata') % capture input history ih = bs(j).hist; % find missing samples t = []; d = diff(bs(j).data.getX); idxs = find(d>dtol/bs(j).data.fs); utils.helper.msg(msg.PROC1, 'found %d data gaps', numel(idxs)); % create new time grid count = 0; fs = bs(j).data.fs; for k=1:numel(idxs) idx = idxs(k); if isempty(t) t = bs(j).data.getX(1:idxs(1)); end % now add samples at 1/fs until we are within 1/fs of the next sample gap = bs(j).data.getX(idx+1) - bs(j).data.getX(idx) - 1/fs; tfill = [[1/fs:1/fs:gap] + bs(j).data.getX(idx)].'; count = count + numel(tfill); if k==numel(idxs) t = [t; tfill; bs(j).data.getX(idx+1:end)]; else t = [t; tfill; bs(j).data.getX(idx+1:idxs(k+1))]; end end utils.helper.msg(msg.PROC1, 'filled with %d samples', count); % now interpolate onto this new time-grid if ~isempty(t) bs(j).interp(plist('vertices', t, 'method', find(pl, 'method'))); bs(j).name = sprintf('interpmissing(%s)', ao_invars{j}); % Add history bs(j).addHistory(getInfo('None'), pl, ao_invars(j), ih); % clear errors bs(j).clearErrors; else utils.helper.msg(msg.PROC1, 'no missing samples found in %s - no action performed.', ao_invars{j}); end else utils.helper.msg(msg.PROC1, 'skipping AO %s - it''s not a time-series AO.', ao_invars{j}); end end % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: interpmissing.m,v 1.30 2011/04/08 08:56:16 hewitson Exp $', sets, pl); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % d p = param({'d','The time interval tolerance for finding missing samples.'}, {1, {1.5}, paramValue.OPTIONAL}); pl.append(p); % Interpolation method pli = ao.getInfo('interp').plists; p = pli.params(pli.getIndexForKey('method')); pl.append(p); end