Mercurial > hg > ltpda
view m-toolbox/classes/@ao/noisegen1D.m @ 20:d58813ab1b92 database-connection-manager
Update ltpda_uo.submit
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% NOISEGEN1D generates colored noise from white noise. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: noisegen1D can work in two different modes: % % ------------------------------------------------------------------------ % 1) Generates colored noise from white noise with a given spectrum. The % function constructs a coloring filter through a fitting procedure to the % model provided. If no model is provided an error is prompted. The colored % noise provided has one-sided psd corresponding to the input model. % % This mode correspond to the 'Default' set for the method (see the list of % parameters). % % ALGORITHM: % 1) Fit a set of partial fraction z-domain filters using % utils.math.psd2tf % 2) Convert to array of MIIR filters % 3) Filter time-series in parallel % % CALL: b = noisegen1D(a, pl) % % INPUT: % - a is a white noise time-series analysis object or a % vector of analysis objects % - pl is a plist with the input parameters % % OUTPUT: % % - b Colored time-series AOs. The coloring filters used % are stored in the objects procinfo field under the % parameter 'Filt'. % % ------------------------------------------------------------------------ % % 2) Generates noise coloring filters for given input psd models. % % This mode correspond to the 'Filter' set for the method (see the list of % parameters). % % ALGORITHM: % 1) Fit a set of partial fraction z-domain filters % 2) Convert to array of MIIR filters % % CALL: fil = noisegen1D(psd, pl) % % INPUT: % - psd is a fsdata analysis object representing the desired % model for the power spectral density of the colored noise % - pl is a plist with the input parameters % % OUTPUT: % % - fil is a filterbank parallel object which elements are % miir filters. Filters are initialized to avoid startup % transients. % % ------------------------------------------------------------------------ % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'noisegen1D')">Parameters Description</a> % % VERSION: $Id: noisegen1D.m,v 1.30 2011/04/08 08:56:15 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = noisegen1D(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Decide on a deep copy or a modify bs = copy(as, nargout); inhists = [as.hist]; % combine plists % define input/output combinations. Different combination are % 1) input tsdata and csd# into the plist, output are colored tsdata % 2) input fsdata, output is a coloring filter (in a matrix) if isempty(pl) % no model input, get model from input setpar = 'Filter'; elseif isa(as(1).data,'fsdata') % get model from input setpar = 'Filter'; else % get model from plist, output tsdata, back compatibility mode setpar = 'Default'; end pl = parse(pl, getDefaultPlist(setpar)); pl.getSetRandState(); switch lower(setpar) case 'default' % Extract necessary parameters model = find(pl, 'model'); case 'filter' fs = find(pl,'fs'); Iunits = find(pl, 'Iunits'); Ounits = find(pl, 'Ounits'); % init filter objects fil = filterbank.initObjectWithSize(size(bs,1),size(bs,2)); end % start building input structure for psd2tf params.idtp = 1; params.Nmaxiter = find(pl, 'MaxIter'); params.minorder = find(pl, 'MinOrder'); params.maxorder = find(pl, 'MaxOrder'); params.spolesopt = find(pl, 'PoleType'); params.weightparam = find(pl, 'Weights'); params.spy = find(pl, 'Disp'); % Tolerance for MSE Value lrscond = find(pl, 'FITTOL'); % give an error for strange values of lrscond if lrscond<0 error('!!! Negative values for FITTOL are not allowed !!!') end % handling data lrscond = -1*log10(lrscond); % give a warning for strange values of lrscond if lrscond<0 warning('You are searching for a MSE lower than %s', num2str(10^(-1*lrscond))) end params.lrscond = lrscond; % Tolerance for the MSE relative variation msevar = find(pl, 'MSEVARTOL'); % handling data msevar = -1*log10(msevar); % give a warning for strange values of msevar if msevar<0 warning('You are searching for MSE relative variation lower than %s', num2str(10^(-1*msevar))) end params.msevar = msevar; if isempty(params.msevar) params.ctp = 'chival'; else params.ctp = 'chivar'; end if(find(pl, 'plot')) params.plot = 1; else params.plot = 0; end params.usesym = 0; params.dterm = 0; % it is better to fit without dterm % Loop over input AOs for jj=1:numel(bs) switch lower(setpar) case 'default' if ~isa(bs(jj).data, 'tsdata') warning('!!! %s expects ao/tsdata objects. Skipping AO %s', mfilename, ao_invars{jj}); else %-------------- Colored noise from white noise % 1) If we have no model gives an error if(isempty(model)) error('!!! Input a model for the desired PSD') end % 2) Noise Generation params.fs = bs(jj).fs; % call psd2tf [res, poles, dterm, mresp, rdl] = ... utils.math.psd2tf(model.y,[],[],[],model.x,params); % get init state Zi = utils.math.getinitstate(res,poles,1,'mtd','svd'); % 3) Convert to MIIR filters % add yunits, taking them from plist or, if empty, from input object Iunits = as(jj).yunits; Ounits = find(pl, 'yunits'); if eq(unit(Ounits), unit('')) Ounits = as(jj).yunits; end pfilts = []; for kk=1:numel(res) ft = miir(res(kk), [ 1 -poles(kk)], bs(jj).fs); ft.setIunits(Iunits); ft.setOunits(Ounits); ft.setHistout(Zi(kk)); % build parallel bank of filters pfilts = [pfilts ft]; end % 4) Filter data bs(jj).filter(pfilts); % 5) Output data % add history bs(jj).addHistory(getInfo('None'), pl, [ao_invars(:)], [inhists(:)]); % name for this object bs(jj).setName(sprintf('noisegen1D(%s)', ao_invars{jj})); % Collect the filters into procinfo bs(jj).procinfo = plist('filter', pfilts); end case 'filter' params.fs = fs; % call psd2tf [res, poles, dterm, mresp, rdl] = ... utils.math.psd2tf(bs(jj).y,[],[],[],bs(jj).x,params); % get init state Zi = utils.math.getinitstate(res,poles,1,'mtd','svd'); % build miir pfilts = []; for kk=1:numel(res) ft = miir(res(kk), [ 1 -poles(kk)], fs); ft.setIunits(Iunits); ft.setOunits(Ounits); ft.setHistout(Zi(kk)); % build parallel bank of filters pfilts = [pfilts ft]; end % build output filterbanks fil(jj) = filterbank(plist('filters',pfilts,'type','parallel')); fil(jj).setName(sprintf('noisegen1D(%s)',ao_invars{jj})); fil(jj).addHistory(getInfo('None'), pl, [ao_invars(:)], [inhists(:)]); end end % switch output switch lower(setpar) case 'default' % Set output if nargout > 1 && nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs.index(ii); end else % Single output varargout{1} = bs; end case 'filter' % Set output if nargout > 1 && nargout == numel(bs) % List of outputs for ii = 1:numel(fil) varargout{ii} = fil.index(ii); end else % Single output varargout{1} = fil; end end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; elseif nargin == 1 && ~isempty(varargin{1}) && ischar(varargin{1}) sets{1} = varargin{1}; pl = getDefaultPlist(sets{1}); else sets = SETS(); % get plists pl(size(sets)) = plist; for kk = 1:numel(sets) pl(kk) = getDefaultPlist(sets{kk}); end end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: noisegen1D.m,v 1.30 2011/04/08 08:56:15 hewitson Exp $', sets, pl); end %-------------------------------------------------------------------------- % Defintion of Sets %-------------------------------------------------------------------------- function out = SETS() out = {... 'Default', ... 'Filter' ... }; end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist(set) persistent pl; persistent lastset; if exist('pl', 'var')==0 || isempty(pl) || ~strcmp(lastset, set) pl = buildplist(set); lastset = set; end plout = pl; end function pl = buildplist(set) pl = plist(); switch lower(set) case 'default' % Yunits p = param({'yunits',['Unit on Y axis. <br>' ... 'If left empty, it will take the y-units from the input object']}, paramValue.STRING_VALUE('')); pl.append(p); % Model p = param({'model', 'A frequency-series AO describing the model psd'}, paramValue.EMPTY_DOUBLE); pl.append(p); case 'filter' % Fs p = param({'fs','The sampling frequency to design for.'}, paramValue.DOUBLE_VALUE(1)); pl.append(p); % Iunits p = param({'iunits','The input units of the filter.'}, paramValue.EMPTY_STRING); pl.append(p); % Ounits p = param({'ounits','The output units of the filter.'}, paramValue.EMPTY_STRING); pl.append(p); end % MaxIter p = param({'MaxIter', 'Maximum number of iterations in fit routine.'}, paramValue.DOUBLE_VALUE(30)); pl.append(p); % PoleType p = param({'PoleType', ['Choose the pole type for fitting:<ol>'... '<li>use real starting poles</li>' ... '<li>generates complex conjugate poles of the<br>'... 'type <tt>a.*exp(theta*pi*j)</tt><br>'... 'with <tt>theta = linspace(0,pi,N/2+1)</tt></li>'... '<li>generates complex conjugate poles of the type<br>'... '<tt>a.*exp(theta*pi*j)</tt><br>'... 'with <tt>theta = linspace(0,pi,N/2+2)</tt></li></ol>']}, {3, {1,2,3}, paramValue.SINGLE}); pl.append(p); % MinOrder p = param({'MinOrder', 'Minimum order to fit with.'}, paramValue.DOUBLE_VALUE(2)); pl.append(p); % MaxOrder p = param({'MaxOrder', 'Maximum order to fit with.'}, paramValue.DOUBLE_VALUE(25)); pl.append(p); % Weights p = param({'Weights', ['Choose weighting for the fit:<ol>'... '<li>equal weights for each point</li>'... '<li>weight with <tt>1/abs(model)</tt></li>'... '<li>weight with <tt>1/abs(model).^2</tt></li>'... '<li>weight with inverse of the square mean spread<br>'... 'of the model</li></ol>']}, paramValue.DOUBLE_VALUE(3)); pl.append(p); % Plot p = param({'Plot', 'Plot results of each fitting step.'}, paramValue.FALSE_TRUE); pl.append(p); % Disp p = param({'Disp', 'Display the progress of the fitting iteration.'}, paramValue.FALSE_TRUE); pl.append(p); % MSEVARTOL p = param({'MSEVARTOL', ['Mean Squared Error Variation - Check if the<br>'... 'realtive variation of the mean squared error is<br>'... 'smaller than the value specified. This<br>'... 'option is useful for finding the minimum of Chi-squared.']}, ... paramValue.DOUBLE_VALUE(1e-2)); pl.append(p); % FITTOL p = param({'FITTOL', ['Mean Squared Error Value - Check if the mean<br>'... 'squared error value is lower than the value<br>'... 'specified.']}, paramValue.DOUBLE_VALUE(1e-2)); pl.append(p); end