Mercurial > hg > ltpda
view m-toolbox/classes/@ao/polynomfit.m @ 20:d58813ab1b92 database-connection-manager
Update ltpda_uo.submit
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% POLYNOMFIT is a polynomial fitting tool %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: POLYNOMFIT is a polynomial fitting tool based on MATLAB's % lscov function. It solves an equation in the form % % Y = P(1) * X^N(1) + P(2) * X^N(2) + ... % % for the fit parameters P. It handles arbitrary powers of the input vector % and uncertainties on the dependent vector Y and input vectors X. % The output is a pest object where the fields are containing: % Quantity % Field % Fit coefficients y % Uncertainties on the fit parameters % (given as standard deviations) dy % The reduced CHI2 of the fit chi2 % The covariance matrix cov % The degrees of freedom of the fit dof % % CALL: P = polynomfit(X, Y, PL) % P = polynomfit(A, PL) % % INPUTS: Y - dependent variable % X - input variables % A - data ao whose x and y fields are used in the fit % PL - parameter list % % OUTPUT: P - a pest object with M = numel(N) fitting coefficients % % % PARAMETERS: % 'orders' - polynom orders. Eg [0,1,-2] fits to P0 + P1*x + P2./x.^2 % 'dy' - uncertainty on the dependent variable % 'dx' - uncertainties on the input variable % 'p0' - initial guess on the fit parameters used ONLY to propagate % uncertainities in the input variable X to the dependent variable Y % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'polynomfit')">Parameters Description</a> % % VERSION: $Id: polynomfit.m,v 1.20 2011/04/08 08:56:11 hewitson Exp $ % % EXAMPLES: % % % 1) Fit with one object input % % nsecs = 5; % fs = 10; % n = [0 1 -2]; % u1 = unit('mV'); % % pl1 = plist('nsecs', nsecs, 'fs', fs, ... % 'tsfcn', sprintf('t.^%d + t.^%d + t.^%d + randn(size(t))', n), ... % 'xunits', 's', 'yunits', u1); % a1 = ao(pl1); % out1 = polynomfit(a1, plist('orders', n, 'dx', 0.1, 'dy', 0.1, 'P0', zeros(size(n)))); % % % 2) Fit with two objects input % % fs = 1; % nsecs = 10; % n = [0 1 -2]; % % X = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm', 'name', 'base')); % N = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm', 'name', 'noise')); % C = [ao(1, plist('yunits', 'm', 'name', 'C1')) ... % ao(4, plist('yunits', 'm/m', 'name', 'C2')) ... % ao(2, plist('yunits', 'm/m^(-2)', 'name', 'C3'))]; % Y = C(1) * X.^0 + C(2) * X.^1 + C(3) * X.^(-2) + N; % Y.simplifyYunits; % out2 = polynomfit(X, Y, plist('orders', n)) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = polynomfit(varargin) % check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end % tell the system we are runing import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % collect all AOs and plists [aos, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pli = utils.helper.collect_objects(varargin(:), 'plist', in_names); if nargout == 0 error('### polynomfit can not be used as a modifier method. Please give at least one output'); end % combine plists, making sure the user input is not empty pli = combine(pli, plist()); pl = parse(pli, getDefaultPlist()); % extract arguments if (length(aos) == 1) % we are using x and y fields of the single ao we have x = aos(1).x; dx = aos(1).dx; y = aos(1).y; dy = aos(1).dy; xunits = aos(1).xunits; yunits = aos(1).yunits; argsname = aos(1).name; elseif (length(aos) == 2) % we are using y fields of the two aos we have x = aos(1).y; dx = aos(1).dy; y = aos(2).y; dy = aos(2).dy; xunits = aos(1).yunits; yunits = aos(2).yunits; argsname = [aos(1).name ',' aos(2).name]; else error('### polynomfit needs one or two input AOs'); end % extract plist parameters. For dx and dy we check the user input plist before dy = find(pli, 'dy', dy); dx = find(pli, 'dx', dx); n = find(pl, 'orders'); p0 = find(pl, 'p0'); % vectors length N = length(y); % number of parameters num_params = length(n); % uncertainty on Y if isempty(dy) dy = 1; end if isa(dy, 'ao') % check units if yunits ~= dy.data.yunits error('### Y and DY units are not compatible - %s %s', char(yunits), char(dy.data.yunits)); end % extract values from AO dy = dy.y; end if isscalar(dy) % given a single value construct a vector dy = ones(N, 1) * dy; end % weights sigma2 = dy.^2; % extract values for initial guess if (isa(p0, 'ao') || isa(p0, 'pest')) p0 = p0.y; end % uncertainty on X if ~isempty(dx) if length(p0) ~= num_params error('### initial parameters guess p0 is mandatory for proper handling of X uncertainties'); end if isa(dx, 'ao') % check units if xunits ~= dx.data.yunits error('### X and DX units are not compatible - %s %s', char(xunits), char(dx.data.yunits)); end % extract values from AO dx = dx.y; end if isscalar(dx) % given a single value construct a vector dx = ones(N, 1) * dx; end % propagate X uncertainty on Y dy_dx_mod = zeros(N, 1); for k = 1:num_params dy_dx_mod = dy_dx_mod + n(k) * p0(k) * x.^(n(k)-1); end sigma2x = dy_dx_mod.^2 .* dx.^2; % add contribution to weights sigma2 = sigma2 + sigma2x; end % construct matrix with desired powers of X m = zeros(length(x), num_params); for k = 1:num_params m(:,k) = x .^ n(k); end % check for the presence of 1/0 terms M = []; X = []; Y = []; S = []; kk = 0; idx = isfinite(m); for jj = 1:size(m,1) if all(idx(jj,:)) kk = kk + 1; M(kk,:) = m(jj,:); X(kk) = x(jj); Y(kk) = y(jj); S(kk,:) = sigma2(jj,:); end end m = M; clear M; x = X'; clear X; y = Y'; clear Y; sigma2 = S; clear S; N = kk; % solve [p, stdp, mse, s] = lscov(m, y, 1./sigma2); % scale errors stdp = stdp ./ sqrt(mse); s = s ./ (mse); % compute chi2 dof = N - length(p); chi2 = sum((y - polynomeval(x, n, p)).^2 ./ sigma2) / dof; % prepare model, units, names model = []; for kk = 1:length(p) if kk == 1 model = [model 'P' num2str(kk) '*X.^(' num2str(n(kk)) ')']; else model = [model ' + P' num2str(kk) '*X.^(' num2str(n(kk)) ')']; end units(kk) = simplify(yunits/xunits.^(n(kk))); names{kk} = ['P' num2str(kk)]; end model = smodel(plist('expression', model, ... 'params', names, ... 'values', p, ... 'xvar', 'X', ... 'xunits', xunits, ... 'yunits', yunits ... )); % Build the output pest object out = pest; out.setY(p); out.setDy(stdp); out.setCov(s); out.setChi2(chi2); out.setDof(dof); out.setNames(names{:}); out.setYunits(units); out.setModels(model); out.name = sprintf('polynomfit(%s)', argsname); out.addHistory(getInfo('None'), pl, ao_invars, [aos(:).hist]); % Set procinfo object out.procinfo = plist('MSE', mse); % set outputs varargout{1} = out; end % computes polynomial combination function out = polynomeval(x, n, p) assert(length(p) == length(n)); out = zeros(size(x, 1), 1); for k = 1:length(n) out = out + p(k) * x.^n(k); end end % get info object function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist(); end % build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.op, '$Id: polynomfit.m,v 1.20 2011/04/08 08:56:11 hewitson Exp $', sets, pl); ii.setModifier(false); ii.setArgsmin(1); end % get default plist function plout = getDefaultPlist() persistent pl; if ~exist('pl', 'var') || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % orders p = param({'orders', 'Polynom orders.'}, [0]); pl.append(p); % default plist for linear fitting pl.append(plist.LINEAR_FIT_PLIST); end