Mercurial > hg > ltpda
view m-toolbox/classes/@ao/whiten1D.m @ 20:d58813ab1b92 database-connection-manager
Update ltpda_uo.submit
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% WHITEN1D whitens the input time-series. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: WHITEN1D whitens the input time-series. The filter is built % by fitting to the model provided. If no model is provided, a % fit is made to a spectral-density estimate of the % time-series (made using psd+bin_data or lpsd). % Note: The function assumes that the input model corresponds % to the one-sided psd of the data to be whitened. % % ALGORITHM: % 1) If no model provided, make psd+bin_data or lpsd % of time-series and take it as a model % for the data power spectral density % 2) Fit a set of partial fraction z-domain filters using % utils.math.psd2wf. The fit is automatically stopped when % the accuracy tolerance is reached. % 3) Convert to array of MIIR filters % 4) Assemble into a parallel filterbank object % 5) Filter time-series in parallel % % % CALL: b = whiten1D(a, pl) % [b1,b2,...,bn] = whiten1D(a1,a2,...,an, pl); % % INPUT: % - as are time-series analysis objects or a vector of % analysis objects % - pl is a plist with the input parameters % % OUTPUT: % - bs "whitened" time-series AOs. The whitening filters used % are stored in the objects procinfo field under the % parameter 'Filter'. % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'whiten1D')">Parameters Description</a> % % VERSION: $Id: whiten1D.m,v 1.43 2011/04/08 08:56:12 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = whiten1D(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Decide on a deep copy or a modify bs = copy(as, nargout); inhists = [as.hist]; % combine plists if isempty(pl) model = 'psd'; else model = find(pl, 'model'); if isempty(model) model = 'psd'; end end if ischar(model) pl = parse(pl, getDefaultPlist(model)); else pl = parse(pl, getDefaultPlist('Default')); end pl.getSetRandState(); scale = find(pl, 'scaleOut'); flim = find(pl, 'flim'); % Loop over input AOs for jj = 1:numel(as) if ~isa(as(jj).data, 'tsdata') utils.helper.msg(msg.IMPORTANT, '%s expects ao/tsdata objects. Skipping AO %s', mfilename, ao_invars{jj}); else %-------------- Whiten this AO % 1) Build whitening filterbank switch class(model) case 'char' % Model is to be evaluated from data in = as(jj); pl.pset('model', model); case 'ao' % Model was provided as fsdata in = model; pl.pset('model', []); end wf = buildWhitener1D(in, pl); % 1.5) Scale the date if demanded if (scale) spsd = lpsd(as(jj)); freqs = spsd.x; if isempty(flim) error('Please specify a flim field, to know the analysis band.'); elseif (flim(2) < flim(1)) error('flim should go from the smaller frequency to the bigger frequency. Please reverse them!') else index = find((freqs > flim(1)) & (freqs < flim(2))); end v1 = spsd.y(index(1):index(end-1)); v2 = spsd.y(index(2):index(end)); m = (v1 + v2) /2; p = sum(m.* diff(freqs(index(1):index(end)))); end % 2) Filter data and scale it if necessary bs(jj).filter(wf); if (scale) bs(jj) = bs(jj) * sqrt(p); end % 3) Output data % name for this object bs(jj).name = sprintf('whiten1D(%s)', ao_invars{jj}); % Collect the filters into procinfo bs(jj).procinfo = combine(plist('Filter', wf.filters), as(jj).procinfo); if(scale) bs(jj).procinfo = combine(plist('ScaleFactor', p, 'Filter', wf.filters), as(jj).procinfo); end % Make sure that the output yunits are empty if ~eq(bs(jj).yunits, unit('')) utils.helper.msg(msg.PROC1, 'Resetting output yunits to empty'); bs(jj).setYunits(unit('')); end % add history bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), inhists(jj)); % clear errors bs(jj).clearErrors; end end % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; elseif nargin == 1 && ~isempty(varargin{1}) && ischar(varargin{1}) sets{1} = varargin{1}; pl = getDefaultPlist(sets{1}); else sets = SETS(); % get plists pl(size(sets)) = plist; for kk = 1:numel(sets) pl(kk) = getDefaultPlist(sets{kk}); end end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: whiten1D.m,v 1.43 2011/04/08 08:56:12 hewitson Exp $', sets, pl); end %-------------------------------------------------------------------------- % Defintion of Sets %-------------------------------------------------------------------------- function out = SETS() out = ao.getInfo('buildWhitener1D').sets; end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist(set) persistent pl; persistent lastset; if ~exist('pl', 'var') || isempty(pl) || ~strcmp(lastset, set) pl = buildplist(set); lastset = set; end plout = pl; end function pl = buildplist(set) pl = plist(); % Append sets of parameters according to the chosen spectral estimator if ~utils.helper.ismember(lower(SETS), lower(set)) error('### Unknown set [%s]', set); else pl = ao.getInfo('buildWhitener1D', lower(set)).plists; end switch lower(set) case 'default' % Model p = param({'model', ['A frequency-series AO describing the model<br>'... 'response to build the filter from. <br>' ... 'As an alternative, the user '... 'can choose a model estimation technique:<br>'... '<li>PSD - using <tt>psd</tt> + <tt>bin_data</tt></li>'... '<li>LPSD - using <tt>lpsd</tt></li>']}, paramValue.EMPTY_DOUBLE); pl = combine(plist(p), pl); otherwise end p = param({'scaleOut', ['Scale your output by the inband power']},paramValue.FALSE_TRUE); pl = combine(plist(p), pl); p = param({'flim', ['Band to calculate the scaling power']},[1e-3 30e-3]); pl = combine(plist(p), pl); end