Mercurial > hg > ltpda
view m-toolbox/classes/@ao/xcorr.m @ 20:d58813ab1b92 database-connection-manager
Update ltpda_uo.submit
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% XCORR makes cross-correlation estimates of the time-series %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: XCORR makes cross-correlation estimates of the time-series % objects in the input analysis objects. The cross-correlation is % computed using MATLAB's xcorr (>> help xcorr). % % CALL: b = xcorr(a1,a2,pl) % % INPUTS: b - output analysis objects % a1,a2 - input analysis objects (only two) % pl - input parameter list % % The function makes correlation estimates between a1 and a2. % % If only on AO is input, the auto-correlation is computed. % % If the last input argument is a parameter list (plist) it is used. % The following parameters are recognised. % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'xcorr')">Parameters Description</a> % % VERSION: $Id: xcorr.m,v 1.23 2011/04/08 08:56:15 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = xcorr(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); if nargout == 0 error('### xcorr cannot be used as a modifier. Please give an output variable.'); end % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % combine plists pl = parse(pl, getDefaultPlist()); na = numel(as); if na > 2 error('### XCORR accepts only two AOs to cross-correlate.'); end %----------------- Keep the history to suppress the history of the %----------------- intermediate steps inhists = [as(:).hist]; %----------------- Resample all AOs copies = zeros(size(as)); fsmax = findFsMax(as); fspl = plist('fsout', fsmax); for jj=1:na % check this is a time-series object if ~isa(as(jj).data, 'tsdata') error('### ltpda_xspec requires tsdata (time-series) inputs.'); end % Check Fs if as(jj).fs ~= fsmax utils.helper.msg(msg.PROC1, 'resampling AO %s to %f Hz', as(jj).name, fsmax); % Make a deep copy so we don't % affect the original input data as(jj) = copy(as(jj), 1); copies(jj) = 1; as(jj).resample(fspl); end end %----------------- Truncate all vectors % Get shortest vector utils.helper.msg(msg.PROC1, '*** Truncating all vectors...'); lmin = findShortestVector(as); nsecs = lmin / fsmax; for jj=1:na if len(as(jj)) ~= lmin utils.helper.msg(msg.PROC2, 'truncating AO %s to %d secs', as(jj).name, nsecs); % do we already have a copy? if ~copies(jj) % Make a deep copy so we don't % affect the original input data as(jj) = copy(as(jj), 1); copies(jj) = 1; end as(jj).select(1:lmin); end end %----------------- check input parameters % Maximum lag for Xcorr MaxLag = find(pl, 'MaxLag'); % Scale for Xcorr scale = find(pl, 'Scale'); % Loop over input AOs bs = ao; % -------- Make Xspec estimate % Compute cross-correlation estimates using XCORR if MaxLag == -1 MaxLag = len(as(1)); end % Use .data.y syntax (rather than .y) to preserve y vector shape [c,lags] = xcorr(as(1).data.y, as(2).data.y, MaxLag, scale); % Keep the data shape of the first input AO if size(as(1).y,1) == 1 c = c.'; end % create new output xydata xy = xydata(lags./fsmax, c); xy.setXunits('s'); switch scale case {'none', 'biased', 'unbiased'} xy.setYunits(as(1).yunits * as(2).yunits); case 'coeff' xy.setYunits(''); otherwise error(['Unsupported scaling option ' scale]); end %----------- create new output history % make output analysis object bs.data = xy; % set name bs.name = sprintf('xcorr(%s->%s)', invars{1}, invars{2}); % Propagate 'plotinfo' plotinfo = [as(:).plotinfo]; if ~isempty(plotinfo) bs.plotinfo = combine(plotinfo); end % we need to get the input histories in the same order as the inputs % to this function call, not in the order of the input to tfestimate; % otherwise the resulting matrix on a 'create from history' will be % mirrored. bs.addHistory(getInfo('None'), pl, [invars(:)], inhists); % Set output varargout{1} = bs; % end end %-------------------------------------------------------------------------- % Returns the length of the shortest vector in samples function lmin = findShortestVector(as) lmin = 1e20; for jj=1:numel(as) if len(as(jj)) < lmin lmin = len(as(jj)); end end end %-------------------------------------------------------------------------- % Returns the max Fs of a set of AOs function fs = findFsMax(as) fs = 0; for jj=1:numel(as) a = as(jj); if a.fs > fs fs = a.fs; end end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: xcorr.m,v 1.23 2011/04/08 08:56:15 hewitson Exp $', sets, pl); ii.setModifier(false); ii.setArgsmin(2); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % MaxLag p = param({'MaxLag', 'Compute over a range of lags -MaxLag to MaxLag [default: M-1]'}, {1, {-1}, paramValue.OPTIONAL}); pl.append(p); % Scale p = param({'Scale', ['normalisation of the correlation. Choose from:<ul>'... '<li>''biased'' - scales the raw cross-correlation by 1/M</li>'... '<li>''unbiased'' - scales the raw correlation by 1/(M-abs(lags))</li>'... '<li>''coeff'' - normalizes the sequence so that the auto-correlations<br>'... 'at zero lag are identically 1.0.</li>'... '<li>''none'' - no scaling</li></ul>']}, {1, {'none', 'biased', 'unbiased', 'coeff'}, paramValue.SINGLE}); pl.append(p); end % PARAMETERS: 'MaxLag' - compute over range of lags -MaxLag to MaxLag [default: M-1] % 'Scale' - normalisation of the correlation. Choose from: % 'biased' - scales the raw cross-correlation by 1/M. % 'unbiased' - scales the raw correlation by 1/(M-abs(lags)). % 'coeff' - normalizes the sequence so that the auto-correlations % at zero lag are identically 1.0. % 'none' - no scaling (this is the default). % % M is the length of longest input vector. If one vector is shorted, % it is zero padded.