Mercurial > hg > ltpda
view m-toolbox/classes/@ssm/cpsdForCorrelatedInputs.m @ 20:d58813ab1b92 database-connection-manager
Update ltpda_uo.submit
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% cpsdForCorrelatedInputs computes the output theoretical CPSD shape with given inputs. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: cpsdForCorrelatedInputs computes the output theoretical CPSD % or PSD shape with given inputs. % It returns summed and contributions only and takes % input arrays of objects (instead of vectors) % % CALL: [mat_out] = CPSD(sys, pl) % % INPUTS: % - sys, (array of) ssm object % % OUTPUTS: % _ mat_out contains specified returned aos % % <a href="matlab:utils.helper.displayMethodInfo('ssm', 'cpsdForCorrelatedInputs')">Parameters Description</a> % % VERSION: $Id: cpsdForCorrelatedInputs.m,v 1.2 2011/05/23 14:18:20 adrien Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = cpsdForCorrelatedInputs(varargin) %% starting initial checks % use the caller is method flag callerIsMethod = utils.helper.callerIsMethod; % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all SSMs and plists [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names); [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist'); if ~isempty(rest) pl = combine(pl, plist(rest{:})); end pl = combine(pl, getDefaultPlist()); %%% Internal call: Only one object + don't look for a plist internal = strcmp(varargin{end}, 'internal'); %% begin function body %% retrieve system infos if numel(sys)~=1 error('noisespectrum needs exactly one ssm as an input') end if ~sys.isnumerical error(['error because system ',sys.name,' is not numerical']); end if ~sys.isStable error('input ssm is not stable!') end if sys.timestep==0 timestep = 1; else timestep = sys.timestep; end if ~internal inhist = sys.hist; end %% modifying system's ordering if find(pl, 'reorganize') sys = reorganize(sys, pl, 'set', 'for cpsdForCorrelatedInputs', 'internal', 'internal'); end %% collecting functions i/o data aos_in = find(pl, 'aos'); PZ_in = find(pl, 'PZmodels'); cov_in = find(pl, 'covariance'); cpsd_in = find(pl, 'CPSD'); noise_in = blkdiag(cov_in, cpsd_in/(timestep*2)); powWhiteNoise = noise_in; [U1,S1,V1] = svd(noise_in.'); % testing hermitian symmetry and definite positiveness if (sum(S1<0)>0) error('covariance/cpsd matrix is not positive') elseif norm(U1-V1')>1e-15*sqrt(numel(U1)) error('covariance/cpsd matrix is not hermitian symmetric') end %% getting system's i/o sizes inputSizes = sys.inputsizes; outputSizes = sys.outputsizes; %#ok<NASGU> Naos_in = inputSizes(1); NPZmodels = inputSizes(3); %% retrieving frequency vector if isempty(Naos_in)==0 f1 = find(pl,'f1'); f2 = find(pl,'f2'); NFreqs = find(pl,'nf'); if isempty(f1) || isempty(f2)|| isempty(NFreqs) error('### Please specify frequency vector a start and stop frequency .'); else freqs = 10.^linspace(log10(f1), log10(f2), NFreqs); end else freqs = aos_in(1).x; end %% checking frequency vector for i=2:numel(aos_in) if ~isequal(freqs,aos_in(i).x) error('there exist different frequency vectors'); end end %% reshape pzmodels and aos for input cross-spectra if size(PZ_in,1)==NPZmodels PZdata = zeros(Npzmodels,Npzmodels,NFreqs); for i=1:NPZmodels for j=1:Npzmodels a = resp(PZ_in(i,j), freqs); PZdata(i,j,:) = reshape(a.y,[1,NFreqs]) ; end end else error('Wrong size for field PZ_in') end if size(aos_in,1)==Naos_in && size(aos_in,2)==Naos_in AOdata = zeros(Naos_in,Naos_in,NFreqs); for i=1:Naos_in for j=1:Naos_in AOdata(i,j,:) = reshape(aos_in(i,j).y,[1,NFreqs]) ; end end else error('Wrong size for field aos_in') end %% SSM Transfer function [a, b, c, d, Ts, InputName, StateName, OutputName,... inputvarunits, ssvarunits, outputvarunits] = double(sys); %#ok<ASGLU> resps = ssm.doBode(a, b, c, d, 2*pi*freqs, Ts); Noutputs = numel(OutputName); %% power for each frequency with SVD computation diagOnly = pl.find('DIAGONAL ONLY'); if diagOnly Result = zeros(Noutputs,NFreqs); else Result = zeros(Noutputs,Noutputs,NFreqs); end for i_freq=1:NFreqs %% contribution from aos, testing positiveness powAO = squeeze(AOdata(:,:,i_freq)); [U1,S1,V1] = svd(powAO.'); % testing hermitian symmetry and definite positiveness if (sum(S1<0)>0) error('AO covariance matrix is not positive') elseif norm(U1-V1')>1e-15*sqrt(numel(U1)) error('AO covariance matrix is not hermitian symmetric') end %% contribution from PZmodels, testing positiveness tfPZ = squeeze(PZdata(:,:,i_freq)); powPZ = tfPZ * tfPZ'; %% summing all three contributions sources, computing CPSD pow = blkdiag(powAO, powWhiteNoise, powPZ); RespLoc = squeeze(resps(:,:,i_freq)); noise = RespLoc * pow * RespLoc' * (2*timestep) ; if diagOnly Result(:,i_freq) = real(diag(noise)) ; else Result(:,:,i_freq) = noise ; end end %% saving in aos if diagOnly % making a psd only ao_out = ao.initObjectWithSize(Noutputs, 1); for io=1:Noutputs ao_out(io).setData(fsdata(freqs, squeeze(Result(io,:)) )); ao_out(io).setName( ['PSD of ' , OutputName{io}]); ao_out(io).setXunits('Hz'); ao_out(io).setYunits(outputvarunits(io)*outputvarunits(io)/unit('Hz')); ao_out(io).setDescription( ['PSD of ' , OutputName{io}]); end else % making a cpsd matrix ao_out = ao.initObjectWithSize(Noutputs, Noutputs); for io=1:Noutputs for jo=1:Noutputs ao_out(io,jo).setData(fsdata(freqs, squeeze(Result(jo,io,:)) )); ao_out(io,jo).setXunits('Hz'); ao_out(io,jo).setYunits(outputvarunits(io)*outputvarunits(jo)/unit('Hz')); if io~=jo ao_out(io,jo).setName( ['Cross PSD of ', OutputName{jo}, ' and ', OutputName{io}]); ao_out(io,jo).setDescription( ['Cross PSD of ', OutputName{jo}, ' and ', OutputName{io}]); else ao_out(io,jo).setName( ['PSD of ' , OutputName{jo}]); ao_out(io,jo).setDescription( ['PSD of ' , OutputName{jo}]); end end end end %% construct output matrix object out = matrix(ao_out); if callerIsMethod % do nothing else myinfo = getInfo('None'); out.addHistory(myinfo, pl , ssm_invars(1), inhist ); end %% Set output depending on nargout if nargout == 1; varargout = {out}; elseif nargout == 0; iplot(ao_out); else error('Wrong number of outputs') end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: cpsdForCorrelatedInputs.m,v 1.2 2011/05/23 14:18:20 adrien Exp $', sets, pl); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function pl = getDefaultPlist() pl = ssm.getInfo('reorganize', 'for cpsdForCorrelatedInputs').plists; pl.remove('set'); p = param({'covariance', 'The covariance matrix of this noise between input ports for the <i>time-discrete</i> noise model.'}, []); pl.append(p); p = param({'CPSD', 'The one sided cpsd matrix of the white noise between input ports.'}, []); pl.append(p); p = param({'aos', 'An array of input AOs, provides the cpsd of the input noise.'}, ao.initObjectWithSize(1,0)); pl.append(p); p = param({'PZmodels', 'An array of input pzmodels, used to filter the input noise.'}, paramValue.DOUBLE_VALUE(zeros(0,1))); pl.append(p); p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE); pl.append(p); p = param({'f2', 'The maximum frequency. Default is Nyquist or 1Hz.'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = param({'f1', 'The minimum frequency. Default is f2*1e-5.'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = param({'nf', 'The number of frequency bins. Frequencies are scale logarithmically'}, paramValue.DOUBLE_VALUE(200)); pl.append(p); p = param({'diagonal only', 'Set to true if you want the PSD instead of the CPSD'}, paramValue.TRUE_FALSE); pl.append(p); end