view m-toolbox/test/test_ao_fftfilt.m @ 20:d58813ab1b92 database-connection-manager

Update ltpda_uo.submit
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Mon, 05 Dec 2011 16:20:06 +0100
parents f0afece42f48
children
line wrap: on
line source

% Test script for ao/fftfilt
%
% L Ferraioli 09-10-08
%
% $Id: test_ao_cov.m,v 1.2 2008/12/11 08:25:15 hewitson Exp $
%

s = ao(plist('tsfcn', '3.*sin(2.*pi.*0.01.*t) + randn(size(t))', 'fs', 10, 'nsecs', 1e4));

%% Test with a miir filter

% get a miir filter
plf = plist('type','lowpass',...
  'order',4,...
  'fs',10,...
  'fc',1);
filt = miir(plf);

% do classical fitering
fs1 = filter(s,filt);
iplot(s,fs1)

% do fftfilt
fs2 = fftfilt(s,filt);

% compare results
iplot(fs1,fs2)
iplot(fs1./fs2)
iplot(fs1-fs2)

%% Test with a miir filter

% get a miir filter
plf = plist('type','lowpass',...
  'order',4,...
  'fs',10,...
  'fc',1);
filt = miir(plf);

% do classical fitering
fs1 = filter(s,filt);
iplot(s,fs1)

% do fftfilt
plfft = plist('Npad',5.*length(s.data.y));
fs2 = fftfilt(s,filt);

% compare results
iplot(fs1,fs2)
iplot(fs1./fs2)
iplot(fs1-fs2)

%%

% imp = zeros(10000,1);
% imp(1) = 1;
% 
% imp_resp = filter(num,den,imp);
% 
% 
% fs1 = filter(num,den,s.y);
% fs2 = conv(s.y,imp_resp);
% X = fft([s.y;zeros(length(imp_resp)-1,1)]);
% Y = fft([imp_resp;zeros(length(s.y)-1,1)]);
% fs3 = ifft(X.*Y);

%% Test pzmodel fftfilt

poles = [pz(1e-3,2) pz(1e-2)];
zeros = [pz(3e-3,3) pz(5e-2)];
pzm   = pzmodel(10, poles, zeros);

% do fftfilt
plfft = plist('Npad',5.*length(s.data.y));
fs = fftfilt(s,pzm);

tf = tfe(s,fs,plist('navs',2));
rsp = resp(pzm,plist('f',logspace(-4,log10(5))));
iplot(tf,rsp)

%% Test smodel

str = 'a.*(2.*i.*pi.*f).^2 + b.*2.*i.*pi.*f + c';
mod = smodel(str);
mod.setParams({'a','b','c'},{1,2,3});
mod.setXvar('f');

freq = logspace(-5,log10(5),100);
mod.setXvals(freq);
mod.setXunits('Hz');
mod.setYunits('kg m s^-2');

% eval smodel
em = eval(mod,plist('output x',freq,'type','fsdata'));

% make a time series
dt = ao.randn(10000,10);

% do fftfilt
sdt = fftfilt(dt,mod);

% test output
tdt = tfe(dt,sdt);
iplot(em,tdt)

%% Test initial conditions

str = 'a.*(2.*i.*pi.*f).^2 + b.*2.*i.*pi.*f + c';
mod = smodel(str);
mod.setParams({'a','b','c'},{1,2,3});
mod.setXvar('f');

freq = logspace(-5,log10(5),100);
mod.setXvals(freq);
mod.setXunits('Hz');
mod.setYunits('kg m s^-2');

% eval smodel
em = eval(mod,plist('output x',freq,'type','fsdata'));

% make a time series
dt = ao.randn(10000,10);

% do fftfilt
sdt = fftfilt(dt,mod);

% do fftfilt with initial conditions assuming a 2nd order equation
sdt_inCond = fftfilt(dt,mod,plist('initial conditions',[2000,1000]));

% test output
iplot(sdt_inCond,sdt)
iplot(sdt_inCond-sdt,plist('yscales',{'all','log'}))