Mercurial > hg > ltpda
view m-toolbox/classes/@ao/integrate.m @ 13:e05504b18072 database-connection-manager
Move more functions to utils.repository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% INTEGRATE integrates the data in AO. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: INTEGRATE integrates the data in AO. The result is a single % valued AO. % % CALL: bs = integrate(a1,a2,a3,...,pl) % bs = integrate(as,pl) % bs = as.integrate(pl) % % INPUTS: aN - input analysis objects % as - input analysis objects array % pl - input parameter list % % OUTPUTS: bs - array of analysis objects, one for each input, % containing the integrate data % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'integrate')">Parameters Description</a> % % VERSION: $Id: integrate.m,v 1.11 2011/04/08 08:56:11 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = integrate(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Decide on a deep copy or a modify bs = copy(as, nargout); % combine plists pl = parse(pl, getDefaultPlist()); % Extract method method = find(pl, 'method'); for jj = 1:numel(bs) % Diff can't work for cdata objects since we need x data if isa(bs(jj).data, 'cdata') end % Compute derivative with selected method yu = bs(jj).data.yunits; switch lower(method) case 'trapezoidal' if isa(bs(jj).data, 'cdata') y = bs(jj).data.getY; bs(jj).data = cdata(trapz(y)); else x = bs(jj).data.getX; y = bs(jj).data.getY; bs(jj).data = cdata(trapz(x,y)); end bs(jj).setYunits(yu); otherwise error('### Unknown method for computing the derivative.'); end % name for this object bs(jj).name = sprintf('integrate(%s)', ao_invars{jj}); % add history bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); end % clear errors bs.clearErrors; % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: integrate.m,v 1.11 2011/04/08 08:56:11 hewitson Exp $', sets, pl); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % Method p = param({'method',['The method to use. Choose between:<ul>', ... '<li>''Trapezoidal'' - integration using MATLAB''s trapz function</li>', ... '</ul>' ... ]}, {1, {'Trapezoidal'}, paramValue.SINGLE}); pl.append(p); end