Mercurial > hg > ltpda
view m-toolbox/classes/@matrix/MultiChannelNoise.m @ 13:e05504b18072 database-connection-manager
Move more functions to utils.repository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% MULTICHANNELNOISE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FUNCTION: MultiChannelNoise % % DESCRIPTION: % % % CALL: a = MultiChannelNoise(a, pl) % % PARAMETER: % pl: plist containing Nsecs, fs % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = MultiChannelNoise(a, pli) VERSION = '$Id: MultiChannelNoise.m,v 1.10 2010/10/29 16:09:13 ingo Exp $'; % get AO info iobj = matrix.getInfo('matrix', 'Multichannel Noise'); % Set the method version string in the minfo object iobj.setMversion([VERSION '-->' iobj.mversion]); % Add default values pl = parse(pli, iobj.plists); % Get parameters and set params for fit Nsecs = find(pl, 'nsecs'); fs = find(pl, 'fs'); filter = find(pl, 'model'); yunit = find(pl, 'yunits'); % total number of data in the series Ntot = round(Nsecs*fs); % chose case for input filter if isa(filter,'matrix') && isa(filter.objs(1),'filterbank') % discrete system sys = 'z'; mfil = filter.objs; [nn,mm] = size(mfil); if nn~=mm error('!!! Filter matrix must be square') end elseif isa(filter,'matrix') && isa(filter.objs(1),'parfrac') % continuous system sys = 's'; mfil = filter.objs; [nn,mm] = size(mfil); if nn~=mm error('!!! Filter matrix must be square') end else error('!!! Input filter must be a ''matrix'' of ''filterbank'' or ''parfrac'' objects.') end % init output out(nn,1) = ao; % switch between input filter type switch sys case 'z' % discrete input filters o = zeros(nn,Ntot); for zz=1:nn % moving along system dimension % extract residues and poles from input objects % run over matrix dimensions res = []; pls = []; filtsz = []; for jj=1:nn % collect filters coefficients along the columns zz bfil = mfil(jj,zz).filters; filtsz = [filtsz; numel(bfil)]; for kk=1:numel(bfil) num = bfil(kk).a; den = bfil(kk).b; res = [res; num(1)]; pls = [pls; -1*den(2)]; end end % rescaling residues to get the correct result for univariate psd res = res.*sqrt(fs/2); Nrs = numel(res); % get covariance matrix R = zeros(Nrs); for aa=1:Nrs for bb=1:Nrs R(aa,bb) = (res(aa)*conj(res(bb)))/(1-pls(aa)*conj(pls(bb))); end end % avoiding problems caused by roundoff errors HH = triu(R,0); % get upper triangular part of R HH1 = triu(R,1); % get upper triangular part of R above principal diagonal HH2 = HH1'; % do transpose conjugate R = HH + HH2; % reconstruct R in order to be really hermitian % get singular value decomposition of R [U,S,V] = svd(R,0); % conversion matrix A = V*sqrt(S); % generate unitary variance gaussian random noise %ns = randn(Nrs,Ntot); ns = randn(Nrs,1); % get correlated starting data points cns = A*ns; % need to correct for roundoff errors % cleaning up results for numerical approximations idx = imag(pls(:,1))==0; cns(idx) = real(cns(idx)); % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate idxi = imag(pls(:,1))~=0; icns = cns(idxi); for jj = 1:2:numel(icns) icns(jj+1,1) = conj(icns(jj,1)); end cns(idxi) = icns; y = zeros(sum(filtsz),2); rnoise = zeros(sum(filtsz),1); rns = randn(1,Ntot); %rns = utils.math.blwhitenoise(Ntot,fs,1/Nsecs,fs/2); %rns = rns.'; % willing to work with raw y(:,1) = cns; % start recurrence for xx = 2:Ntot+1 rnoise(:,1) = rns(xx-1); y(:,2) = pls.*y(:,1) + res.*rnoise; idxr = 0; for kk=1:nn o(kk,xx-1) = o(kk,xx-1) + sum(y(idxr+1:idxr+filtsz(kk),2)); idxr = idxr+filtsz(kk); end y(:,1) = y(:,2); end end clear rns % build output ao for dd=1:nn out(dd,1) = ao(tsdata(o(dd,:),fs)); out(dd,1).setYunits(unit(yunit)); end a = matrix(out); case 's' % continuous input filters o = zeros(nn,Ntot); T = 1/fs; % sampling period for zz=1:nn % moving along system dimension % extract residues and poles from input objects % run over matrix dimensions res = []; pls = []; filtsz = []; for jj=1:nn % collect filters coefficients along the columns zz bfil = mfil(jj,zz); filtsz = [filtsz; numel(bfil.res)]; res = [res; bfil.res]; pls = [pls; bfil.poles]; end % rescaling residues to get the correct result for univariate psd res = res.*sqrt(fs/2); Nrs = numel(res); % get covariance matrix for innovation Ri = zeros(Nrs); for aa=1:Nrs for bb=1:Nrs Ri(aa,bb) = (res(aa)*conj(res(bb)))*(exp((pls(aa) + conj(pls(bb)))*T)-1)/(pls(aa) + conj(pls(bb))); end end % avoiding problems caused by roundoff errors HH = triu(Ri,0); % get upper triangular part of R HH1 = triu(Ri,1); % get upper triangular part of R above principal diagonal HH2 = HH1'; % do transpose conjugate Ri = HH + HH2; % reconstruct R in order to be really hermitian % get singular value decomposition of R [Ui,Si,Vi] = svd(Ri,0); % conversion matrix for innovation Ai = Vi*sqrt(Si); % get covariance matrix for initial state Rx = zeros(Nrs); for aa=1:Nrs for bb=1:Nrs Rx(aa,bb) = -1*(res(aa)*conj(res(bb)))/(pls(aa) + conj(pls(bb))); end end % avoiding problems caused by roundoff errors HH = triu(Rx,0); % get upper triangular part of R HH1 = triu(Rx,1); % get upper triangular part of R above principal diagonal HH2 = HH1'; % do transpose conjugate Rx = HH + HH2; % reconstruct R in order to be really hermitian % get singular value decomposition of R [Ux,Sx,Vx] = svd(Rx,0); % conversion matrix for initial state Ax = Vx*sqrt(Sx); % generate unitary variance gaussian random noise %ns = randn(Nrs,Ntot); ns = randn(Nrs,1); % get correlated starting data points cns = Ax*ns; % need to correct for roundoff errors % cleaning up results for numerical approximations idx = imag(pls(:,1))==0; cns(idx) = real(cns(idx)); % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate idxi = imag(pls(:,1))~=0; icns = cns(idxi); for jj = 1:2:numel(icns) icns(jj+1,1) = conj(icns(jj,1)); end cns(idxi) = icns; y = zeros(sum(filtsz),2); rnoise = zeros(sum(filtsz),1); rns = randn(1,Ntot); %rns = utils.math.blwhitenoise(Ntot,fs,1/Nsecs,fs/2); %rns = rns.'; % willing to work with raw y(:,1) = cns; % start recurrence for xx = 2:Ntot+1 % innov = Ai*randn(sum(filtsz),1); rnoise(:,1) = rns(xx-1); innov = Ai*rnoise; % need to correct for roundoff errors % cleaning up results for numerical approximations innov(idx) = real(innov(idx)); % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate iinnov = innov(idxi); for jj = 1:2:numel(iinnov) iinnov(jj+1,1) = conj(iinnov(jj,1)); end innov(idxi) = iinnov; y(:,2) = diag(exp(pls.*T))*y(:,1) + innov; idxr = 0; for kk=1:nn o(kk,xx-1) = o(kk,xx-1) + sum(y(idxr+1:idxr+filtsz(kk),2)); idxr = idxr+filtsz(kk); end y(:,1) = y(:,2); end end % clear rns % build output ao for dd=1:nn out(dd,1) = ao(tsdata(o(dd,:),fs)); out(dd,1).setYunits(unit(yunit)); end a = matrix(out); end end