Mercurial > hg > ltpda
view m-toolbox/test/LTPDA_training/topic5/gendata.m @ 13:e05504b18072 database-connection-manager
Move more functions to utils.repository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% util script to generate training session data for topic 5 % L FERRAIOLI 22-02-09 % % $Id: gendata.m,v 1.4 2009/10/02 08:31:21 mauro Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% save path data_path = '/Users/MH/Matlab/ltpda_cvs/software/m-toolbox/test/LTPDA_Training/topic5/'; %% 1) model filter % Model Residues and Poles mRes = [2.44554138162509e-011 - 1.79482547894083e-011i; 2.44554138162509e-011 + 1.79482547894083e-011i; 2.66402334803101e-009 + 1.1025122049153e-009i; 2.66402334803101e-009 - 1.1025122049153e-009i; -7.3560293387644e-009; -1.82811618589835e-009 - 1.21803627800855e-009i; -1.82811618589835e-009 + 1.21803627800855e-009i; 1.16258677367555e-009; 1.65216557639319e-016; -1.78092396888606e-016; -2.80420398962379e-017; 9.21305973049041e-013 - 8.24686706827269e-014i; 9.21305973049041e-013 + 8.24686706827269e-014i; 5.10730060739905e-010 - 3.76571756625722e-011i; 5.10730060739905e-010 + 3.76571756625722e-011i; 3.45893698149735e-009; 3.98139182134446e-014 - 8.25503935419059e-014i; 3.98139182134446e-014 + 8.25503935419059e-014i; -1.40595719147164e-011]; mPoles = [0.843464045655194 - 0.0959986292915475i; 0.843464045655194 + 0.0959986292915475i; 0.953187595424927 - 0.0190043625473383i; 0.953187595424927 + 0.0190043625473383i; 0.967176277937188; 0.995012027005247 - 0.00268322602801729i; 0.995012027005247 + 0.00268322602801729i; 0.996564761885673; 0.999999366165445; 0.999981722418555; 0.999921882627659; 0.999624431675213 - 0.000813407848742761i; 0.999624431675213 + 0.000813407848742761i; 0.997312006278751 - 0.00265611346834941i; 0.997312006278751 + 0.00265611346834941i; 0.990516544257531; 0.477796923118318 - 0.311064085401834i; 0.477796923118318 + 0.311064085401834i; 0]; f = logspace(-6,log10(5),100).'; fs = 10; pfparams.type = 'disc'; pfparams.freq = f; pfparams.fs = fs; pfparams.res = mRes; pfparams.pol = mPoles; pfparams.dterm = 0; % response of the model filter pfr = utils.math.pfresp(pfparams); y = pfr.resp; % saving AO rfilt = ao(plist('xvals', f, 'yvals', y, 'fs', fs, 'dtype', 'fsdata')); rfilt.setName; % rfilt.save(plist('filename',[data_path 'T5_Ex02_rfilt.mat'])); rfilt.save(plist('filename',[data_path 'T5_Ex02_rfilt.xml'])); %% 2) Peaked model psd % Create a psd model with two peak resonance at 5e-2 and 7e-2 Hz func = '(1e-3./(f).^2 + 1e3./(0.001+f) + 1e6.*f.^2).*1e-10 + 1e-5./(1e-3+((f./1e-2).^2-1).^2) + 1e-6./(1e-3+((f./2e-2).^2-1).^2)'; pl_data = plist('fsfcn', func, 'f1', 1e-6, 'f2', .5, 'nf', 300); mod = ao(pl_data); iplot(mod) %% Building white noise a = ao(plist('tsfcn', 'randn(size(t))', 'fs', 1, 'nsecs', 10000, 'yunits', 'm')); a.setName; %% Calling the noise generator pl = plist(... 'model', mod, ... % Multiplication by fs needed to preserve energy 'MaxIter', 70, ... 'PoleType', 2, ... 'MinOrder', 10, ... 'MaxOrder', 45, ... 'Weights', 2, ... 'Plot', false,... 'Disp', false,... 'RMSEVar', 7,... 'FitTolerance', 2); ac = noisegen1D(a, pl); %% acxx = ac.psd(plist('Nfft',2000)); iplot(acxx,mod) %% ac.save(plist('filename',sprintf([data_path 'T5_Ex03_TestNoise.mat']))); ac.save(plist('filename',sprintf([data_path 'T5_Ex03_TestNoise.xml']))); %% 3) Generate polynomial tsdata % Make fake AO from polyval nsecs = 1000; fs = 1; a1 = ao(plist('tsfcn', 'polyval([1e-11 0 -5e-6 -1e-3 -5e-1 0.5], t) + 5e2*randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); % iplot(a1) a1.save(plist('filename',sprintf([data_path 'T5_Ex04_TestNoise.mat']))); a1.save(plist('filename',sprintf([data_path 'T5_Ex04_TestNoise.xml']))); %% 4) Generate tsdata from function nsecs = 1000; fs = 1; a2 = ao(plist('tsfcn','5 + 3.*sin(2.*pi.*(1e-4 + 1e-5.*t).*t + 0.3) + randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); iplot(a2) a2.save(plist('filename',sprintf([data_path 'T5_Ex05_TestNoise.mat']))); a2.save(plist('filename',sprintf([data_path 'T5_Ex05_TestNoise.xml']))); %% 5) Temp and Ifo data % read ao ifo_rw = ao('ifo_temp_example/ifo_training.dat'); ifo_rw.setYunits('rad'); T_rw = ao('ifo_temp_example/temp_training.dat'); T_rw.setYunits('degC'); %% % Consolidate data [ifo_c,T_c] = consolidate(ifo_rw,T_rw,plist('fs',1)); ifo_c.save(plist('filename',sprintf([data_path 'ifo_Ex06.mat']))); ifo_c.save(plist('filename',sprintf([data_path 'ifo_Ex06.xml']))); T_c.save(plist('filename',sprintf([data_path 'T_Ex06.mat']))); T_c.save(plist('filename',sprintf([data_path 'T_Ex06.xml']))); %% % do TF % pl2 = plist('Nfft', 2000); % tf = tfe(T_c,ifo_c,pl2); tf = tfe(T_c,ifo_c);