Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/pzmodel2SSMats.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line source
function [A,B,C,D] = pzmodel2SSMats(pzm) if (~numel(pzm)==1) || (~isa(pzm, 'pzmodel')) error(['function ' mfilename ' only accepts one pzmodel as an input']) end den = 1; num = 1; G = pzm.gain; % computing the A matrix for i=1:length(pzm.poles) if isnan(pzm.poles(i).q) w0 = pzm.poles(i).f*2*pi ; den = conv(den,[1 w0]); G = G * w0; else q = pzm.poles(i).q; w0 = 2*pi*pzm.poles(i).f; p = [1, 1/q*w0 w0^2]; den = conv(den,p); G = G * w0 * w0; end end % computing the C matrix for i=1:length(pzm.zeros) if isnan(pzm.zeros(i).q) w0 = pzm.zeros(i).f*2*pi ; num = conv(num,[1 w0]); G = G / w0; else q = pzm.zeros(i).q; w0 = 2*pi*pzm.zeros(i).f; p = [1, 1/q*w0 w0^2]; num = conv(num,p); G = G / w0 / w0; end end % setting gain num = num*G; % zero padding TF numerator if degree is smaller than denominator Nss = length(den)-1; if length(num)<Nss+1 num = [zeros(1,Nss+1-length(num)) num]; end % computing the D/C matrix [q,r] = deconv(num,den); % polynmial division for den = conv(num,q)+r . if ~length(q)==1 error('system may be non causal'); end % Allocating matrices D = q; A = [zeros(Nss-1,1) eye(Nss-1); fliplr(-den(2:(Nss+1)))]; B = zeros(Nss,1); if Nss>0 B(Nss) = 1; end C = fliplr(r(2:(Nss+1))); end