Import.
line source
+ − % BUILDWHITENER1D builds a whitening filter based on the input frequency-series.
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % DESCRIPTION:BUILDWHITENER1D builds a whitening filter based on the input frequency-series.
+ − % The filter is built by fitting to the model provided.
+ − % If no model is provided, a fit is made to a spectral-density estimate of the
+ − % input time-series (made using psd+bin_data or lpsd).
+ − % Note: The function assumes that the input model corresponds
+ − % to the one-sided psd of the data to be whitened.
+ − %
+ − % ALGORITHM:
+ − % 1) If no model provided, make psd+bin_data or lpsd
+ − % of time-series and take it as a model
+ − % for the data power spectral density
+ − % 2) Fit a set of partial fraction z-domain filters using
+ − % utils.math.psd2wf. The fit is automatically stopped when
+ − % the accuracy tolerance is reached.
+ − % 3) Convert to array of MIIR filters
+ − % 4) Assemble into a parallel filterbank object
+ − %
+ − %
+ − % CALL: b = buildWhitener1D(a, pl)
+ − % [b1,b2,...,bn] = buildWhitener1D(a1,a2,...,an, pl);
+ − %
+ − % INPUT:
+ − % - as is a time-series analysis object or a vector of
+ − % analysis objects
+ − % - pl is a plist with the input parameters
+ − %
+ − % OUTPUT:
+ − % - b "whitening" filters, stored into a filterbank.
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('ao', 'buildWhitener1D')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: buildWhitener1D.m,v 1.11 2011/04/18 19:46:57 mauro Exp $
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − function varargout = buildWhitener1D(varargin)
+ −
+ − % Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − import utils.const.*
+ − utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all AOs and plists
+ − [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
+ − pl = utils.helper.collect_objects(varargin(:), 'plist', in_names);
+ −
+ − if nargout == 0
+ − error('### buildWhitener cannot be used as a modifier. Please give an output variable.');
+ − end
+ −
+ − % combine plists
+ − if isempty(pl)
+ − model = 'psd';
+ − else
+ − model = find(pl, 'model');
+ − if isempty(model)
+ − model = 'psd';
+ − pl.pset('model', model);
+ − end
+ − end
+ −
+ − if ischar(model)
+ − pl = parse(pl, getDefaultPlist(model));
+ − else
+ − pl = parse(pl, getDefaultPlist('Default'));
+ − end
+ − pl.getSetRandState();
+ −
+ − % Collect input histories
+ − inhists = [as.hist];
+ −
+ − % Initialize output objects
+ − bs = filterbank.initObjectWithSize(1, numel(as));
+ −
+ −
+ − % Loop over input AOs
+ − for jj = 1:numel(as)
+ − % 1) searching for input model
+ − switch class(as(jj).data)
+ − case 'tsdata'
+ − % Build the model based on input time-series
+ − utils.helper.msg(msg.PROC1, 'user input tsdata object, estimating the model from it');
+ − model = estimateModel(as(jj), pl);
+ − case 'fsdata'
+ − % The input data are the model
+ − utils.helper.msg(msg.PROC1, 'user input fsdata object, taking it as the model');
+ − model = as(jj);
+ − otherwise
+ − warning('!!! %s expects ao/tsdata or ao/fsdata objects. Skipping AO %s', mfilename, ao_invars{jj});
+ − return;
+ − end
+ −
+ − %-------------- Whiten this AO
+ −
+ − % Extract necessary parameters
+ −
+ − % Tolerance for MSE Value
+ − lrscond = find(pl, 'FITTOL');
+ − % give an error for strange values of lrscond
+ − if lrscond < 0
+ − error('!!! Negative values for FITTOL are not allowed !!!')
+ − end
+ − % handling data
+ − lrscond = -1 * log10(lrscond);
+ − % give a warning for strange values of lrscond
+ − if lrscond<0
+ − warning('You are searching for a MSE lower than %s', num2str(10^(-1*lrscond)))
+ − end
+ − params.lrscond = lrscond;
+ −
+ − % Tolerance for the MSE relative variation
+ − msevar = find(pl, 'MSEVARTOL');
+ − % handling data
+ − msevar = -1 * log10(msevar);
+ − % give a warning for strange values of msevar
+ − if msevar<0
+ − warning('You are searching for MSE relative variation lower than %s', num2str(10^(-1*msevar)))
+ − end
+ − params.msevar = msevar;
+ −
+ − if isempty(params.msevar)
+ − params.ctp = 'chival';
+ − else
+ − params.ctp = 'chivar';
+ − end
+ −
+ − % Weights
+ − switch find(pl, 'Weights')
+ − case {'equal', 'flat', 1}
+ − params.weightparam = 1;
+ − case {'1/abs', '1./abs', 2}
+ − params.weightparam = 2;
+ − case {'1/abs^2', '1/abs2', '1./abs^2', '1./abs2', 3}
+ − params.weightparam = 3;
+ − otherwise
+ − warning('Unrecognized weights option %s', find(pl, 'Weights'))
+ − end
+ −
+ − % 2) Build filters
+ −
+ − % Build input structure for psd2wf
+ − params.idtp = 1;
+ − params.Nmaxiter = find(pl, 'MaxIter');
+ − params.minorder = find(pl, 'MinOrder');
+ − params.maxorder = find(pl, 'MaxOrder');
+ − params.spolesopt = find(pl, 'PoleType');
+ − params.spy = find(pl, 'Disp');
+ −
+ −
+ − if (find(pl, 'plot'))
+ − params.plot = 1;
+ − else
+ − params.plot = 0;
+ − end
+ −
+ − fs = find(pl, 'fs');
+ − if isempty(fs) || fs <= 0 || ~isfinite(fs)
+ − if isempty(model.fs) || model.fs <= 0 || ~isfinite(model.fs)
+ − error('### Invalid fs value %s. Please specify a meaningful fs, either via the model or in the plist', num2str(fs));
+ − else
+ − fs = model.fs;
+ − end
+ − end
+ −
+ − params.fs = fs;
+ − params.usesym = 0;
+ − params.dterm = 0; % it is better to fit without direct term
+ − params.fullauto = 1;
+ −
+ − % call psd2wf
+ − [res, poles, dterm, mresp, rdl] = ...
+ − utils.math.psd2wf(model.y,[],[],[],model.x,params);
+ −
+ − % 3) Convert to MIIR filters
+ −
+ − % filtering with a stable model
+ − pfilts = [];
+ − for kk = 1:numel(res)
+ − ft = miir(res(kk), [ 1 -poles(kk)], fs);
+ − pfilts = [pfilts ft];
+ − end
+ −
+ − % 4) Build the output filterbank object
+ − bs(jj) = filterbank(plist('filters', pfilts, 'type', 'parallel'));
+ − % set the input units to be the same as the model
+ − bs(jj).setIunits(sqrt(model.yunits * unit('Hz')));
+ − % set the output units to be empty
+ − bs(jj).setOunits(unit());
+ −
+ − % set the name for this object
+ − bs(jj).name = sprintf('buildWhitener1D(%s)', ao_invars{jj});
+ − % add history
+ − bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), inhists(jj));
+ − end
+ −
+ − % Set output
+ − if nargout == numel(bs)
+ − % List of outputs
+ − for ii = 1:numel(bs)
+ − varargout{ii} = bs(ii);
+ − end
+ − else
+ − % Single output
+ − varargout{1} = bs;
+ − end
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − elseif nargin == 1 && ~isempty(varargin{1}) && ischar(varargin{1})
+ − sets{1} = varargin{1};
+ − pl = getDefaultPlist(sets{1});
+ − else
+ − sets = SETS();
+ − % get plists
+ − pl(size(sets)) = plist;
+ − for kk = 1:numel(sets)
+ − pl(kk) = getDefaultPlist(sets{kk});
+ − end
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: buildWhitener1D.m,v 1.11 2011/04/18 19:46:57 mauro Exp $', sets, pl);
+ − end
+ −
+ −
+ − %--------------------------------------------------------------------------
+ − % Defintion of Sets
+ − %--------------------------------------------------------------------------
+ −
+ − function out = SETS()
+ − out = {...
+ − 'Default', ...
+ − 'PSD', ...
+ − 'LPSD' ...
+ − };
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function plout = getDefaultPlist(set)
+ − persistent pl;
+ − persistent lastset;
+ − if ~exist('pl', 'var') || isempty(pl) || ~strcmp(lastset, set)
+ − pl = buildplist(set);
+ − lastset = set;
+ − end
+ − plout = pl;
+ − end
+ −
+ −
+ − function pl = buildplist(set)
+ − pl = plist();
+ −
+ − % Model
+ − p = param({'model', ['A model estimation technique in the case of tsdata input:<br>'...
+ − '<li>PSD - using <tt>psd</tt> + <tt>bin_data</tt></li>'...
+ − '<li>LPSD - using <tt>lpsd</tt></li>']}, {1, {'PSD', 'LPSD'}, paramValue.SINGLE});
+ − pl.append(p);
+ −
+ − % Range
+ − p = param({'range', ['The frequency range to evaluate the fitting.<br>' ...
+ − 'An empty value or [-inf inf] will include the whole range.<br>' ...
+ − 'The remaining part of the model will be completed according<br>' ...
+ − 'to the option chosen in the ''complete'' parameter.<br>' ...
+ − ]}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − % Complete
+ − p = param({'complete_hf', ['Choose how to complete the frequency range up to fs/2.<ol>' ...
+ − '<li>Assumes flat response</li>' ...
+ − '<li>Assumes 4 poles low-pass type response</li>' ...
+ − ]}, {1,{'flat', 'lowpass'}, paramValue.SINGLE});
+ − pl.append(p);
+ −
+ − % fs
+ − p = param({'fs', ['The sampling frequency to design the output filter on.<br>' ...
+ − 'If it is not a positive number, it will be taken from the model' ...
+ − ]}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − % MaxIter
+ − p = param({'MaxIter', 'Maximum number of iterations in fit routine.'}, paramValue.DOUBLE_VALUE(30));
+ − pl.append(p);
+ −
+ − % PoleType
+ − p = param({'PoleType', ['Choose the pole type for fitting:<ol>'...
+ − '<li>use real starting poles</li>'...
+ − '<li>generates complex conjugate poles of the<br>'...
+ − 'type <tt>a.*exp(theta*pi*j)</tt>'...
+ − 'with <tt>theta = linspace(0,pi,N/2+1)</tt></li>'...
+ − '<li>generates complex conjugate poles of the type<br>'...
+ − '<tt>a.*exp(theta*pi*j)</tt><br>'...
+ − 'with <tt>theta = linspace(0,pi,N/2+2)</tt></li></ol>']}, {1, {1, 2, 3}, paramValue.SINGLE});
+ − pl.append(p);
+ −
+ − % MinOrder
+ − p = param({'MinOrder', 'Minimum order to fit with.'}, paramValue.DOUBLE_VALUE(2));
+ − pl.append(p);
+ −
+ − % MaxOrder
+ − p = param({'MaxOrder', 'Maximum order to fit with.'}, paramValue.DOUBLE_VALUE(25));
+ − pl.append(p);
+ −
+ − % Weights
+ − p = param({'Weights', ['Choose weighting method:<ol>'...
+ − '<li>equal weights for each point</li>'...
+ − '<li>weight with <tt>1/abs(model)</tt></li>'...
+ − '<li>weight with <tt>1/abs(model).^2</tt></li></ol>']}, ...
+ − {2, {'equal', '1/abs', '1/abs^2'}, paramValue.SINGLE});
+ − pl.append(p);
+ −
+ − % Plot
+ − p = param({'Plot', 'Plot results of each fitting step.'}, paramValue.FALSE_TRUE);
+ − pl.append(p);
+ −
+ − % Disp
+ − p = param({'Disp', 'Display the progress of the fitting iteration.'}, paramValue.FALSE_TRUE);
+ − pl.append(p);
+ −
+ − % MSEVARTOL
+ − p = param({'MSEVARTOL', ['Mean Squared Error Variation - Check if the<br>'...
+ − 'relative variation of the mean squared error is<br>'...
+ − 'smaller than the value specified. This<br>'...
+ − 'option is useful for finding the minimum of Chi-squared.']}, ...
+ − paramValue.DOUBLE_VALUE(1e-1));
+ − pl.append(p);
+ −
+ − % FITTOL
+ − p = param({'FITTOL', ['Mean Squared Error Value - Check if the mean<br>'...
+ − 'squared error value is lower than the value<br>'...
+ − 'specified.']}, paramValue.DOUBLE_VALUE(1e-2));
+ − pl.append(p);
+ −
+ − % Append sets of parameters according to the chosen spectral estimator
+ − if ~utils.helper.ismember(lower(SETS), lower(set))
+ − error('### Unknown set [%s]', set);
+ − end
+ −
+ − switch lower(set)
+ − case 'default'
+ − pl.remove('model');
+ − case 'psd'
+ − pl = combine(pl, ao.getInfo('psd').plists);
+ − pl.pset(...
+ − 'model', 'PSD', ...
+ − 'Navs', 16, ...
+ − 'order', 1, ...
+ − 'olap', 50 ...
+ − );
+ − pl = combine(pl, ao.getInfo('bin_data').plists);
+ − pl.pset(...
+ − 'method', 'MEAN', ...
+ − 'resolution', 50 ...
+ − );
+ − case 'lpsd'
+ − pl = combine(pl, ao.getInfo('lpsd').plists);
+ − pl.pset(...
+ − 'model', 'LPSD' ...
+ − );
+ − otherwise
+ − end
+ − end
+ −
+ −
+ − %--------------------------------------------------------------------------
+ − % Estimate a model from the data or from user input
+ − %--------------------------------------------------------------------------
+ − function model = estimateModel(b, pl)
+ −
+ − import utils.const.*
+ −
+ −
+ − % Estimate a model for the PSD
+ − model_all = find(pl, 'model');
+ − if ischar(model_all)
+ − switch lower(model_all)
+ − case 'psd'
+ − % Select only the parameters associated to ao/psd
+ − pls = ao.getInfo('psd').plists;
+ − % Call ao/psd
+ − sp = psd(b, pl.subset(pls.getKeys()));
+ − % Select only the parameters associated to ao/bin_data
+ − pls = ao.getInfo('bin_data').plists;
+ − % Call ao/bin_data
+ − model_all = bin_data(sp, pl.subset(pls.getKeys()));
+ − case 'lpsd'
+ − % Select only the parameters associated to ao/lpsd
+ − pls = ao.getInfo('lpsd').plists;
+ − model_all = lpsd(b, pl.subset(pls.getKeys()));
+ − otherwise
+ − error('### Unknown model [%s]', model_all);
+ − end
+ − end
+ −
+ − % Select only a limited frequency range
+ − frange = find(pl, 'range');
+ − if isempty(frange)
+ − frange = [-inf inf];
+ − end
+ − model = model_all.split(plist('frequencies', frange));
+ − f1 = frange(1);
+ − f2 = frange(2);
+ −
+ − if isfinite(f2)
+ − % Select a technique to complete the high frequency range
+ − complete_up_opt = find(pl, 'complete_hf');
+ − switch complete_up_opt
+ − case {'flat', 'allpass', 'all pass', 'all-pass'}
+ − utils.helper.msg(msg.PROC1, 'Completing the frequency range from %s to %s with flat model', ...
+ − num2str(f2), num2str(b.fs/2));
+ − % Build a flat model response
+ − r = ones(size(model_all.x));
+ − case {'lowpass', 'low pass', 'low-pass'}
+ − utils.helper.msg(msg.PROC1, 'Completing the frequency range from %s to %s with 4 poles low-pass model', ...
+ − num2str(f2), num2str(b.fs/2));
+ − % Build a 4 poles low pass resp
+ − r = abs(resp(pzmodel(plist('gain', 1, 'poles', {10*f2,11*f2,12*f2,13*f2})), plist('f', model_all.x)));
+ − r = r.y;
+ − otherwise
+ − error('### Unknown option [%s] for high frequency completion', complete_up_opt);
+ − end
+ − model_hf = r * model.y(end);
+ − model = join(model, ...
+ − ao(plist('type', 'fsdata', 'xvals', model_all.x, 'yvals', model_hf, 'fs', model_all.fs, 'yunits', model_all.yunits)));
+ − end
+ −
+ − end
+ −
+ −