Mercurial > hg > ltpda
view m-toolbox/classes/@ao/consolidate.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line source
% CONSOLIDATE resamples all input AOs onto the same time grid. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CONSOLIDATE resamples all input AOs onto the same time grid and truncates all % time-series to start at the maximum start time of the inputs and end % at the minimum stop time of the inputs. % % ALGORITHM: % 1) Drop duplicate samples (ao/dropduplicates) % 2) Interpolate missing samples (ao/interpmissing) % 3) Fix uneven sample rate using interpolate (ao/fixfs) % 4) Resample to same fs, either max or specified (ao/resample % or ao/interp depending on ratio of old and new sample % rate) % 5) Truncate all vectors to minimum overlap of time-series % (ao/split) % 6) Resample on to the same timing grid (ao/interp) % 7) Truncate all vectors to same number of samples to correct for % any rounding errors in previous steps (ao/select) % % CALL: >> bs = consolidate(as) % % INPUTS: as - array of at least two time-series analysis objects % pl - parameter list (see below) % % OUTPUTS: bs - array of analysis objects, one for each input % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'consolidate')">Parameters Description</a> % % VERSION: $Id: consolidate.m,v 1.32 2011/04/08 08:56:13 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 't' - specify a new time vector to resample on to. This % will be truncated to fit within the maximum start % time and minimum stop time of the inputs. % or function varargout = consolidate(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); if numel(as) < 2 error('### Consolidate requires at least two time-series AOs to work.'); end if nargout == 0 error('### Consolidate cannot be used as a modifier. Please give an output variable.'); end % Decide on a deep copy or a modify bs = copy(as, nargout); na = numel(bs); % Combine plists pl = parse(pl, getDefaultPlist); % Get only tsdata AOs inhists = []; for j=1:na if ~isa(bs(j).data, 'tsdata') bs(j) = []; warning('!!! Skipping AO %s - it''s not a time-series AO.', bs(j).name); else % gather the input history objects inhists = [inhists bs(j).hist]; end end % If fs is specified, use it. Otherwise, use max of all % input AOs. fs = find(pl, 'fs'); if isempty(fs) % compute max fs fs = 0; for j=1:na if bs(j).data.fs > fs fs = bs(j).data.fs; end end end utils.helper.msg(msg.PROC2, 'resampling all time-series to an fs of %f', fs); %----------------- Drop all repeated samples utils.helper.msg(msg.PROC1, 'drop duplicates'); for j=1:na utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name); dropduplicates(bs(j),pl); end %----------------- Interpolate all missing samples utils.helper.msg(msg.PROC1, 'interpolate missing samples'); for j=1:na utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name); interpmissing(bs(j),pl.pset('method', find(pl, 'interp_method'))); end %----------------- Fix uneven sampling utils.helper.msg(msg.PROC1, 'fixing uneven sample rates'); for j=1:na utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name); fixfs(bs(j),pl.pset('method', find(pl, 'fixfs_method'))); end %----------------- Resample all vectors to same fs utils.helper.msg(msg.PROC1, 'resample to same fs'); for j=1:na % Check the resampling factor [P,Q] = utils.math.intfact(fs,bs(j).data.fs); if P > 100 || Q > 100 utils.helper.msg(msg.PROC2, 'resampling factor too high [%g/%g]. Trying interpolation', P, Q); N = length(bs(j).data.getX); t = linspace(0, (P*N/Q-1)/fs, P*N/Q); interp(bs(j), plist('vertices', t)); else resample(bs(j), plist('fsout', fs)); end end %---------------- Time properties of AOs % Find max start time start = 0; for j=1:na dstart = bs(j).data.t0.utc_epoch_milli/1000 + bs(j).data.getX(1); if dstart > start start = dstart; end end % Find min stop time stop = 1e20; for j=1:na dstop = floor(bs(j).data.t0.utc_epoch_milli/1000 + bs(j).data.getX(end)); if dstop < stop stop = dstop; end end %----------------- Truncate all vectors utils.helper.msg(msg.PROC1, 'truncate all vectors'); utils.helper.msg(msg.PROC2, 'truncating vectors on interval [%.4f,%.4f]', start, stop); % split each ao bs = split(bs, plist('timespan', timespan(start, stop))); %----------------- Resample all vectors on to the same grid utils.helper.msg(msg.PROC1, 'resample to same grid'); % compute new time grid % get the grid from the first AO for j=1:na toff = start - bs(j).t0.utc_epoch_milli/1000; N = length(bs(j).data.getX); t = linspace(toff, toff+(N-1)/fs, N); interp(bs(j), plist('vertices', t)); end % Now ensure that we have the same data length ns = realmax; for jj=1:na if len(bs(jj)) < ns ns = len(bs(jj)); end end bs = select(bs, 1:ns); nsecs = []; for j=1:na if isempty(nsecs) nsecs = bs(j).data.nsecs; end if nsecs ~= bs(j).data.nsecs error('### Something went wrong with the truncation. Vectors don''t span the same time period.'); end end %----------------- Set history on output AOs for j=1:na bs(j).name = sprintf('%s(%s)', mfilename, ao_invars{j}); bs(j).addHistory(getInfo('None'), pl, ao_invars(j), inhists(j)); end % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: consolidate.m,v 1.32 2011/04/08 08:56:13 hewitson Exp $', sets, pl); ii.setModifier(false); ii.setArgsmin(2); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl_default = buildplist() pl_default = combine(... plist({'fs','The target sampling frequency for consolidate'}, paramValue.EMPTY_DOUBLE),... plist({'interp_method', 'The method for the interpolation step'}, {2, {'nearest', 'linear', 'spline', 'cubic'}, paramValue.SINGLE}), ... plist({'fixfs_method', 'The method for the fixfs step'}, {1, {'Time', 'Samples'}, paramValue.SINGLE}), ... ao.getInfo('dropduplicates').plists,... ao.getInfo('interpmissing').plists,... ao.getInfo('fixfs').plists); end