Import.
line source
+ − % CRB computes the inverse of the Fisher Matrix
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % DESCRIPTION: CRB computes the inverse of the Fisher Matrix
+ − %
+ − % CALL: bs = crb(in,pl)
+ − %
+ − % INPUTS: in - matrix objects with input signals to the system
+ − % model - symbolic models containing the transfer function model
+ − %
+ − % pl - parameter list
+ − %
+ − % OUTPUTS: bs - covariance matrix AO
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('matrix', 'crb')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: crb.m,v 1.17 2011/10/07 08:19:55 miquel Exp $
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − function varargout = crb(varargin)
+ −
+ − % Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − import utils.const.*
+ − utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
+ −
+ − % Method can not be used as a modifier
+ − if nargout == 0
+ − error('### crb cannot be used as a modifier. Please give an output variable.');
+ − end
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all AOs smodels and plists
+ − [mtxs, mtxs_invars] = utils.helper.collect_objects(varargin(:), 'matrix', in_names);
+ − pl = utils.helper.collect_objects(varargin(:), 'plist', in_names);
+ −
+ − % Combine plists
+ − pl = parse(pl, getDefaultPlist);
+ −
+ − % get params
+ − params = find(pl,'FitParams');
+ − numparams = find(pl,'paramsValues');
+ − mdl = find(pl,'model');
+ − mtxns = find(pl,'noise');
+ − outModel = find(pl,'outModel');
+ − bmdl = find(pl,'built-in');
+ − f1 = find(pl,'f1');
+ − f2 = find(pl,'f2');
+ − pseudoinv = find(pl,'pinv');
+ − tol = find(pl,'tol');
+ − outNames = find(pl,'outNames');
+ − inNames = find(pl,'inNames');
+ −
+ − % Decide on a deep copy or a modify
+ − in = copy(mtxs, nargout);
+ − n = copy(mtxns, nargout);
+ −
+ − % Get number of experiments
+ − nexp = numel(in);
+ −
+ − % fft
+ − fin = fft(in);
+ −
+ − % N should get before spliting, in order to convert correctly from psd to
+ − % fft
+ − N = length(fin(1).getObjectAtIndex(1).x);
+ −
+ − % Get rid of fft f =0, reduce frequency range if needed
+ − if ~isempty(f1) && ~isempty(f2)
+ − fin = split(fin,plist('frequencies',[f1 f2]));
+ − end
+ −
+ − FMall = zeros(numel(params),numel(params));
+ − % loop over experiments
+ − for k = 1:nexp
+ −
+ − utils.helper.msg(msg.IMPORTANT, sprintf('Analysis of experiment #%d',k), mfilename('class'), mfilename);
+ −
+ − if (((numel(n(1).objs)) == 1) && (numel(in(1).objs) == 1))
+ −
+ − % use signal fft to get frequency vector.
+ − i1 = fin(k).getObjectAtIndex(1,1);
+ − freqs = i1.x;
+ −
+ − FisMat = utils.math.fisher_1x1(i1,n(k),mdl,params,numparams,freqs,N,pl,inNames,outNames);
+ − % store Fisher Matrix for this run
+ − FM{k} = FisMat;
+ − % adding up
+ − FMall = FMall + FisMat;
+ −
+ − elseif (((numel(n(1).objs)) == 2) && (numel(in(1).objs) == 2))
+ − % use signal fft to get frequency vector. Take into account signal
+ − % could be empty or set to zero
+ − % 1st channel
+ − if all(fin(k).getObjectAtIndex(1,1).y == 0) || isempty(fin(k).getObjectAtIndex(1,1).y)
+ − i1 = ao(plist('type','fsdata','xvals',0,'yvals',0));
+ − else
+ − i1 = fin(k).getObjectAtIndex(1,1);
+ − freqs = i1.x;
+ − end
+ − % 2nd channel
+ − if all(fin(k).getObjectAtIndex(2,1).y == 0) || isempty(fin(k).getObjectAtIndex(2,1).y)
+ − i2 = ao(plist('type','fsdata','xvals',0,'yvals',0));
+ − else
+ − i2 = fin(k).getObjectAtIndex(2,1);
+ − freqs = i2.x;
+ − end
+ −
+ − FisMat = utils.math.fisher_2x2(i1,i2,n(k),mdl,params,numparams,freqs,N,pl,inNames,outNames);
+ − % store Fisher Matrix for this run
+ − FM{k} = FisMat;
+ − % adding up
+ − FMall = FMall + FisMat;
+ −
+ − elseif ((numel(n(1).objs) == 3) && (numel(in.objs) == 4) && ~isempty(outModel))
+ − % this is only valid for the magnetic model, where we have 4 inputs
+ − % (corresponding to the 4 conformator waveforms) and 3 outputs
+ − % (corresponding to IFO.x12, IFO.eta1 and IFO.phi1). And there is a
+ − % contribution of an outModel converting the conformator waveforms
+ − % into forces and torques.
+ −
+ −
+ − % For other cases not implemented yet.
+ −
+ − % use signal fft to get frequency vector. Take into account signal
+ − % could be empty or set to zero
+ − % 1st channel
+ − freqs = fin.getObjectAtIndex(1,1).x;
+ −
+ − for ii = 1:numel(n.objs)
+ − for jj = ii:numel(n.objs)
+ − % Compute psd
+ − if (ii==jj)
+ − spec(ii,jj) = psd(n(k).getObjectAtIndex(ii), pl);
+ − S2(ii,jj) = interp(spec(ii,jj),plist('vertices',freqs,'method','linear'));
+ − else
+ − spec(ii,jj) = cpsd(n(k).getObjectAtIndex(ii),n(k).getObjectAtIndex(jj),pl);
+ − S2(ii,jj) = interp(spec(ii,jj),plist('vertices',freqs,'method','linear'));
+ − S2(jj,ii) = conj(S2(ii,jj));
+ − end
+ − end
+ − end
+ −
+ − S = matrix(S2,plist('shape',[numel(n.objs) numel(n.objs)]));
+ −
+ − % get some parameters used below
+ − fs = S.getObjectAtIndex(1,1).fs;
+ −
+ −
+ − if(~isempty(outModel))
+ − for lll=1:size(outModel,1)
+ − for kkk=1:size(outModel,2)
+ − outModel(lll,kkk) = split(outModel(lll,kkk),plist('frequencies',[f1 f2]));
+ − end
+ − end
+ − end
+ −
+ − % Avoid numerical differentiation (faster for the magnetic case)
+ − Param{1} = [ 1 0 0 0;
+ − 0 0 0 0;
+ − 0 0 0 0;];
+ − Param{2} = [ 0 1 0 0;
+ − 0 0 0 0;
+ − 0 0 0 0;];
+ − Param{3} = [ 0 0 0 0;
+ − 0 0 1 0;
+ − 0 0 0 0;];
+ − Param{4} = [ 0 0 0 0;
+ − 0 0 0 0;
+ − 0 0 0 1;];
+ −
+ − % scaling of PSD
+ − % PSD = 2/(N*fs) * FFT *conj(FFT)
+ − for j = 1: numel(S.objs)
+ − % spectra to variance
+ − C(:,j) = (N*fs/2)*S.objs(j).data.getY;
+ − end
+ −
+ − detm = (C(:,1).*C(:,5).*C(:,9) + ...
+ − C(:,2).*C(:,6).*C(:,7) + ...
+ − C(:,3).*C(:,4).*C(:,8) -...
+ − C(:,7).*C(:,5).*C(:,3) -...
+ − C(:,8).*C(:,6).*C(:,1) -...
+ − C(:,9).*C(:,4).*C(:,2));
+ −
+ − InvS11 = (C(:,5).*C(:,9) - C(:,8).*C(:,6))./detm;
+ − InvS12 = -(C(:,4).*C(:,9) - C(:,7).*C(:,6))./detm;
+ − InvS13 = (C(:,4).*C(:,8) - C(:,7).*C(:,5))./detm;
+ − InvS21 = -(C(:,2).*C(:,9) - C(:,8).*C(:,3))./detm;
+ − InvS22 = (C(:,1).*C(:,9) - C(:,7).*C(:,3))./detm;
+ − InvS23 = -(C(:,1).*C(:,8) - C(:,7).*C(:,2))./detm;
+ − InvS31 = (C(:,2).*C(:,6) - C(:,5).*C(:,3))./detm;
+ − InvS32 = -(C(:,1).*C(:,6) - C(:,4).*C(:,3))./detm;
+ − InvS33 = (C(:,1).*C(:,5) - C(:,4).*C(:,2))./detm;
+ −
+ − for pp = 1:length(params)
+ − for ll = 1:size(outModel,1)
+ − for kk = 1:size(Param{pp},2)
+ − % index convention: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4)
+ − tmp = 0;
+ − for innerIndex = 1:size(outModel,2)
+ − tmp = tmp + outModel(ll,innerIndex).y * Param{pp}(innerIndex,kk);
+ − end
+ − h{pp}(:,(kk-1)*size(outModel,1) + ll) = tmp;
+ − end
+ − end
+ −
+ − end
+ −
+ − for kk = 1:numel(in.objs)
+ − inV(:,kk) = fin.objs(kk).data.getY;
+ − end
+ −
+ −
+ − % compute Fisher Matrix
+ − for i =1:length(params)
+ − for j =1:length(params)
+ −
+ − for ll = 1:size(outModel,1)
+ − tmp = 0;
+ − for kk = 1:size(Param{1},2)
+ − tmp = tmp + h{i}(:,(kk-1)*size(outModel,1) + ll).*inV(:,kk);
+ − end
+ − v{i}(:,ll) = tmp;
+ − end
+ −
+ −
+ − for ll = 1:size(outModel,1)
+ − tmp = 0;
+ − for kk = 1:size(Param{1},2)
+ − tmp = tmp + h{j}(:,(kk-1)*size(outModel,1) + ll).*inV(:,kk);
+ − end
+ − v{j}(:,ll) = tmp;
+ − end
+ −
+ − v1v1 = conj(v{i}(:,1)).*v{j}(:,1);
+ − v1v2 = conj(v{i}(:,1)).*v{j}(:,2);
+ − v1v3 = conj(v{i}(:,1)).*v{j}(:,3);
+ − v2v1 = conj(v{i}(:,2)).*v{j}(:,1);
+ − v2v2 = conj(v{i}(:,2)).*v{j}(:,2);
+ − v2v3 = conj(v{i}(:,2)).*v{j}(:,3);
+ − v3v1 = conj(v{i}(:,3)).*v{j}(:,1);
+ − v3v2 = conj(v{i}(:,3)).*v{j}(:,2);
+ − v3v3 = conj(v{i}(:,3)).*v{j}(:,3);
+ −
+ − FisMat(i,j) = sum(real(InvS11.*v1v1 +...
+ − InvS12.*v1v2 +...
+ − InvS13.*v1v3 +...
+ − InvS21.*v2v1 +...
+ − InvS22.*v2v2 +...
+ − InvS23.*v2v3 +...
+ − InvS31.*v3v1 +...
+ − InvS32.*v3v2 +...
+ − InvS33.*v3v3));
+ − end
+ − end
+ − % store Fisher Matrix for this run
+ − FM{k} = FisMat;
+ − % adding up
+ − FMall = FMall + FisMat;
+ − else
+ − error('Implemented cases: 2 inputs / 2outputs (TN3045 analysis), and 4 inputs / 3 outpus (magnetic complete analysis model. Other cases have not been implemented yet. Sorry for the inconvenience)');
+ − end
+ −
+ −
+ − end
+ −
+ − % inverse is the optimal covariance matrix
+ − if pseudoinv && isempty(tol)
+ − cov = pinv(FMall);
+ − elseif pseudoinv
+ − cov = pinv(FMall,tol);
+ − else
+ − cov = FMall\eye(size(FMall));
+ − end
+ −
+ −
+ − % create AO
+ − out = ao(cov);
+ − % Fisher Matrix in the procinfo
+ − out.setProcinfo(plist('FisMat',FM));
+ −
+ − varargout{1} = out;
+ − end
+ −
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pls = [];
+ − else
+ − sets = {'Default'};
+ − pls = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: crb.m,v 1.17 2011/10/07 08:19:55 miquel Exp $', sets, pls);
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function plout = getDefaultPlist()
+ − persistent pl;
+ − if exist('pl', 'var')==0 || isempty(pl)
+ − pl = buildplist();
+ − end
+ − plout = pl;
+ − end
+ −
+ − function pl = buildplist()
+ − pl = plist.WELCH_PLIST;
+ − pset(pl,'Navs',1)
+ −
+ − p = plist({'f1', 'Initial frequency for the analysis'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − p = plist({'f2', 'Final frequency for the analysis'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − p = plist({'FitParamas', 'Parameters of the model'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − p = plist({'model','An array of matrix models'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − p = plist({'noise','An array of matrices with the cross-spectrum matrices'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − p = plist({'built-in','Symbolic models of the system as a string of built-in models'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − p = plist({'frequencies','Array of start/sop frequencies where the analysis is performed'}, paramValue.EMPTY_STRING);
+ − pl.append(p);
+ −
+ − p = plist({'pinv','Use the Penrose-Moore pseudoinverse'}, paramValue.TRUE_FALSE);
+ − pl.append(p);
+ −
+ − p = plist({'tol','Tolerance for the Penrose-Moore pseudoinverse'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − p = plist({'step','Numerical differentiation step for ssm models'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − p = plist({'ngrid','Number of points in the grid to compute the optimal differentiation step for ssm models'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − p = plist({'stepRanges','An array with upper and lower values for the parameters ranges. To be used to compute the optimal differentiation step for ssm models.'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ − end