view m-toolbox/html_help/help/ug/ltpda_training_topic_4_4.html @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
line wrap: on
line source

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
   "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

<html lang="en">
<head>
  <meta name="generator" content=
  "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org">
  <meta http-equiv="Content-Type" content=
  "text/html; charset=us-ascii">

  <title>How to filter data (LTPDA Toolbox)</title>
  <link rel="stylesheet" href="docstyle.css" type="text/css">
  <meta name="generator" content="DocBook XSL Stylesheets V1.52.2">
  <meta name="description" content=
  "Presents an overview of the features, system requirements, and starting the toolbox.">
  </head>

<body>
  <a name="top_of_page" id="top_of_page"></a>

  <p style="font-size:1px;">&nbsp;</p>

  <table class="nav" summary="Navigation aid" border="0" width=
  "100%" cellpadding="0" cellspacing="0">
    <tr>
      <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td>

      <td valign="baseline" align="right"><a href=
      "ltpda_training_topic_4_3.html"><img src="b_prev.gif" border="0" align=
      "bottom" alt="Modelling a system"></a>&nbsp;&nbsp;&nbsp;<a href=
      "ltpda_training_topic_4_4_1.html"><img src="b_next.gif" border="0" align=
      "bottom" alt="By discretizing transfer function models"></a></td>
    </tr>
  </table>

  <h1 class="title"><a name="f3-12899" id="f3-12899"></a>How to filter data</h1>
  <hr>
  
  <p>
	<h2>How to filter data</h2>

In the previous sections we've been dealing with continuous (in s domain) 
systems. Now we want to apply this to data so we will need first to discretize 
to obtain a digital filter to then apply it to the data. Another typical 
application is not to derive the filter from a model but design it from the 
properties we want it to have (cut-off frequency, order, lowpass...). 
Both topics will be covered here with two examples:
 
<nl>
    <li><b>Obtain a digital filter from a model:</b> we continue with the previous
    closed loop example to translate the obtained models into filters.</li>
    <li><b>Define filter properties:</b> in this section we design a bandpass filter that will 
  allow us to estimate the noise spectrum of interferometer data in the desired
bandwidth.</li>
</nl>

  </p>

  <br>
  <br>
  <table class="nav" summary="Navigation aid" border="0" width=
  "100%" cellpadding="0" cellspacing="0">
    <tr valign="top">
      <td align="left" width="20"><a href="ltpda_training_topic_4_3.html"><img src=
      "b_prev.gif" border="0" align="bottom" alt=
      "Modelling a system"></a>&nbsp;</td>

      <td align="left">Modelling a system</td>

      <td>&nbsp;</td>

      <td align="right">By discretizing transfer function models</td>

      <td align="right" width="20"><a href=
      "ltpda_training_topic_4_4_1.html"><img src="b_next.gif" border="0" align=
      "bottom" alt="By discretizing transfer function models"></a></td>
    </tr>
  </table><br>

  <p class="copy">&copy;LTP Team</p>
</body>
</html>