Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/ltpda_training_topic_4_4.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line source
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> <html lang="en"> <head> <meta name="generator" content= "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> <meta http-equiv="Content-Type" content= "text/html; charset=us-ascii"> <title>How to filter data (LTPDA Toolbox)</title> <link rel="stylesheet" href="docstyle.css" type="text/css"> <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> <meta name="description" content= "Presents an overview of the features, system requirements, and starting the toolbox."> </head> <body> <a name="top_of_page" id="top_of_page"></a> <p style="font-size:1px;"> </p> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr> <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> <td valign="baseline" align="right"><a href= "ltpda_training_topic_4_3.html"><img src="b_prev.gif" border="0" align= "bottom" alt="Modelling a system"></a> <a href= "ltpda_training_topic_4_4_1.html"><img src="b_next.gif" border="0" align= "bottom" alt="By discretizing transfer function models"></a></td> </tr> </table> <h1 class="title"><a name="f3-12899" id="f3-12899"></a>How to filter data</h1> <hr> <p> <h2>How to filter data</h2> In the previous sections we've been dealing with continuous (in s domain) systems. Now we want to apply this to data so we will need first to discretize to obtain a digital filter to then apply it to the data. Another typical application is not to derive the filter from a model but design it from the properties we want it to have (cut-off frequency, order, lowpass...). Both topics will be covered here with two examples: <nl> <li><b>Obtain a digital filter from a model:</b> we continue with the previous closed loop example to translate the obtained models into filters.</li> <li><b>Define filter properties:</b> in this section we design a bandpass filter that will allow us to estimate the noise spectrum of interferometer data in the desired bandwidth.</li> </nl> </p> <br> <br> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr valign="top"> <td align="left" width="20"><a href="ltpda_training_topic_4_3.html"><img src= "b_prev.gif" border="0" align="bottom" alt= "Modelling a system"></a> </td> <td align="left">Modelling a system</td> <td> </td> <td align="right">By discretizing transfer function models</td> <td align="right" width="20"><a href= "ltpda_training_topic_4_4_1.html"><img src="b_next.gif" border="0" align= "bottom" alt="By discretizing transfer function models"></a></td> </tr> </table><br> <p class="copy">©LTP Team</p> </body> </html>