Import.
line source
+ − <!-- $Id: sigproc_diff_content.html,v 1.10 2011/04/05 08:12:13 hewitson Exp $ -->
+ −
+ − <!-- ================================================== -->
+ − <!-- BEGIN CONTENT FILE -->
+ − <!-- ================================================== -->
+ − <!-- ===== link box: Begin ===== -->
+ − <p>
+ − <table border="1" width="80%">
+ − <tr>
+ − <td>
+ − <table border="0" cellpadding="5" class="categorylist" width="100%">
+ − <colgroup>
+ − <col width="37%"/>
+ − <col width="63%"/>
+ − </colgroup>
+ − <tbody>
+ − <tr valign="top">
+ − <td>
+ − <a href="#description">Description</a>
+ − </td>
+ − <td>Discrete derivative estimation in LTPDA.</td>
+ − </tr>
+ − <tr valign="top">
+ − <td>
+ − <a href="#algorithm">Algorithm</a>
+ − </td>
+ − <td>Derivatives Algorithms.</td>
+ − </tr>
+ − <tr valign="top">
+ − <td>
+ − <a href="#examples">Examples</a>
+ − </td>
+ − <td>Usage examples of discrete derivative estimation tools.</td>
+ − </tr>
+ − <tr valign="top">
+ − <td>
+ − <a href="#references">References</a>
+ − </td>
+ − <td>Bibliographic references.</td>
+ − </tr>
+ − </tbody>
+ − </table>
+ − </td>
+ − </tr>
+ − </table>
+ − </p>
+ − <!-- ===== link box: End ====== -->
+ −
+ −
+ −
+ − <p>
+ −
+ − </p>
+ −
+ −
+ − <h2><a name="description">Derivative calculation for dicrete data series</a></h2>
+ −
+ − <p>
+ − Derivative estimation on discrete data series is implemented by the function
+ − <a href="matlab:doc('ao/diff')">ao/diff</a>.
+ − This function embeds several algorithms for the calculation
+ − of zero, first and second order derivative. Where with zero order derivative we intend
+ − a particular category of data smoothers [1].
+ − </p>
+ −
+ −
+ −
+ − <h2><a name="algorithm">Algorithm</a></h2>
+ −
+ − <p>
+ − <table cellspacing="0" class="body" cellpadding="2" border="0" width="80%">
+ − <colgroup>
+ − <col width="15%"/>
+ − <col width="85%"/>
+ − </colgroup>
+ − <thead>
+ − <tr valign="top">
+ − <th class="categorylist">Method</th>
+ − <th class="categorylist">Description</th>
+ − </tr>
+ − </thead>
+ − <tbody>
+ − <tr valign="top">
+ − <td bgcolor="#f3f4f5">
+ − <p><span class="string">'2POINT'</span></p>
+ − </td>
+ − <td bgcolor="#f3f4f5">
+ − <p>
+ − Compute first derivative with two point equation according to:
+ − <div align="center">
+ − <IMG src="images/sigproc_diff_algo01.gif" align="center" border="0">
+ − </div>
+ − </p>
+ − </td>
+ − </tr>
+ − <tr valign="top">
+ − <td bgcolor="#f3f4f5">
+ − <p><span class="string">'3POINT'</span></p>
+ − </td>
+ − <td bgcolor="#f3f4f5">
+ − <p>
+ − Compute first derivative with three point equation according to:
+ − <div align="center">
+ − <IMG src="images/sigproc_diff_algo02.gif" align="center" border="0">
+ − </div>
+ − </p>
+ − </td>
+ − </tr>
+ − <tr valign="top">
+ − <td bgcolor="#f3f4f5">
+ − <p><span class="string">'5POINT'</span></p>
+ − </td>
+ − <td bgcolor="#f3f4f5">
+ − <p>
+ − Compute first derivative with five point equation according to:
+ − <div align="center">
+ − <IMG src="images/sigproc_diff_algo03.gif" align="center" border="0">
+ − </div>
+ − </p>
+ − </td>
+ − </tr>
+ − <tr valign="top">
+ − <td bgcolor="#f3f4f5">
+ − <p><span class="string">'FPS'</span></p>
+ − </td>
+ − <td bgcolor="#f3f4f5">
+ − <p>
+ − Five Point Stencil is a generalized method to calculate zero, first and second
+ − order discrete derivative of a given time series. Derivative approximation,
+ − at a given time <i>t = kT</i> (<i>k</i> being an integer and <i>T</i>
+ − being the sampling time), is calculated by means of finite differences
+ − between the element at <i>t</i> with its four neighbors:
+ − <div align="center">
+ − <IMG src="images/sigproc_diff_algo04.gif" align="center" border="0">
+ − </div>
+ − </p>
+ − <p>
+ − It can be demonstrated that the coefficients of the expansion can be
+ − expressed as a function of one of them [1]. This allows the construction
+ − of a family of discrete derivative estimators characterized by a
+ − good low frequency accuracy and a smoothing behavior at high frequencies
+ − (near the nyquist frequency). <br/>
+ − Non-trivial values for the <span class="string">'COEFF'</span> parameter are:
+ − <ul>
+ − <li> Parabolic fit approximation <br/>
+ − These coefficients can be obtained by a parabolic fit procedure on
+ − a generic set of data [1].
+ − <ul>
+ − <li> Zeroth order -3/35
+ − <li> First order -1/5
+ − <li> Second order 2/7
+ − </ul>
+ − <li> Taylor series expansion <br/>
+ − These coefficients can be obtained by a series expansion of a generic set of data [1 - 3].
+ − <ul>
+ − <li> First order 1/12
+ − <li> Second order -1/12
+ − </ul>
+ − <li> PI <br/>
+ − This coefficient allows to define a second derivative estimator with
+ − a notch feature at the nyquist frequency [1].
+ − <ul>
+ − <li> Second order 1/4
+ − </ul>
+ − </ul>
+ − </p>
+ − </td>
+ − </tr>
+ − </tbody>
+ − </table>
+ − </p>
+ −
+ − <h2><a name="examples"></a>Examples</h2>
+ −
+ − Consider <tt>a</tt> as a time series analysis object. First and second
+ − derivative of <tt>a</tt> can be easily obtained with a call to
+ − <a href="matlab:doc('ao/diff')">diff</a>. Please refer to
+ − <a href="matlab:doc('ao/diff')">ao/diff</a> documantation page for the
+ − meaning of any parameter.
+ − <p>
+ − Frequency response of first and second order estimators is reported in
+ − figures 1 and 2 respectively.
+ − </p>
+ −
+ − <h3>First derivative</h3>
+ −
+ − <div class="fragment"><pre>
+ −
+ − pl = plist(...
+ − <span class="string">'method'</span>, <span class="string">'2POINT'</span>);
+ − b = diff(a, pl);
+ −
+ − pl = plist(...
+ − <span class="string">'method'</span>, <span class="string">'ORDER2SMOOTH'</span>);
+ − c = diff(a, pl);
+ −
+ − pl = plist(...
+ − <span class="string">'method'</span>, <span class="string">'3POINT'</span>);
+ − d = diff(a, pl);
+ −
+ − pl = plist(...
+ − <span class="string">'method'</span>, <span class="string">'5POINT'</span>);
+ − e = diff(a, pl);
+ −
+ − pl = plist(...
+ − <span class="string">'method'</span>, <span class="string">'FPS'</span>, ...
+ − <span class="string">'ORDER'</span>, <span class="string">'FIRST'</span>, ...
+ − <span class="string">'COEFF'</span>, -1/5);
+ − f = diff(a, pl);
+ −
+ − </pre></div>
+ −
+ − <h3>Second derivative</h3>
+ −
+ − <div class="fragment"><pre>
+ −
+ − pl = plist(...
+ − <span class="string">'method'</span>, <span class="string">'FPS'</span>, ...
+ − <span class="string">'ORDER'</span>, <span class="string">'SECOND'</span>, ...
+ − <span class="string">'COEFF'</span>, 2/7);
+ − b = diff(a, pl);
+ −
+ − pl = plist(...
+ − <span class="string">'method'</span>, <span class="string">'FPS'</span>, ...
+ − <span class="string">'ORDER'</span>, <span class="string">'SECOND'</span>, ...
+ − <span class="string">'COEFF'</span>, -1/12);
+ − c = diff(a, pl);
+ −
+ − pl = plist(...
+ − <span class="string">'method'</span>, <span class="string">'FPS'</span>, ...
+ − <span class="string">'ORDER'</span>, <span class="string">'SECOND'</span>, ...
+ − <span class="string">'COEFF'</span>, 1/4);
+ − d = diff(a, pl);
+ −
+ − </pre></div>
+ −
+ −
+ − <div align="center">
+ − <p>
+ − <IMG src="images/sigproc_diff_algo05.png" align="center" border="0">
+ − </p>
+ − <p>
+ − <b> Figure 1:</b> Frequency response of first derivative estimators.
+ − </p>
+ −
+ − </div>
+ − <div align="center">
+ − <p>
+ − </p>
+ − <IMG src="images/sigproc_diff_algo06.png" align="center" border="0">
+ − <p>
+ − <b> Figure 2:</b> Frequency response of second derivative estimators.
+ − </p>
+ − </div>
+ −
+ −
+ − <h2><a name="references">References</a></h2>
+ −
+ − <ol>
+ − <li> L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative
+ − estimation in LISA Pathfinder data reduction,
+ − <a href="matlab:web('http://www.iop.org/EJ/abstract/0264-9381/26/9/094013/','-browser')">Class. Quantum Grav. 26 (2009) 094013.</a>. <br/>
+ − L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative
+ − estimation in LISA Pathfinder data reduction
+ − <a href="matlab:web('http://arxiv.org/abs/0903.0324v1','-browser')">arXiv:0903.0324v1</a>
+ − <li> Steven E. Koonin and Dawn C. Meredith, Computational Physics, Westview Press (1990).
+ − <li> John H. Mathews, Computer derivations of numerical differentiation formulae,
+ − <i>Int. J. Math. Educ. Sci. Technol.<i>, 34:2, 280 - 287.
+ − </ol>
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −