Import.
line source
+ − <h2>Description</h2>
+ − <p>
+ − The LTPDA method <a href="matlab:doc('ao/psd')">ao/psd</a> estimates the power spectral density of time-series
+ − signals, included in the input <tt>ao</tt>s following the Welch's averaged, modified periodogram method <a href="#references">[1]</a>.
+ − Data are windowed prior to the estimation of the spectrum, by multiplying
+ − it with a <a href="specwin.html">spectral window object</a>, and can be detrended by a polinomial of time in order to reduce the impact
+ − of the border discontinuities. The window length is adjustable to shorter lenghts to reduce the spectral
+ − density uncertainties, and the percentage of subsequent window overlap can be adjusted as well. The detrending is
+ − performed on the individual windows. The user can choose the quantity being given in output among
+ − ASD (amplitude spectral density), PSD (power spectral density), AS (amplitude spectrum), and PS (power spectrum).
+ − <br>
+ − <br>
+ − <h2>Syntax</h2>
+ − </p>
+ − <div class="fragment"><pre>
+ − <br> bs = psd(a1, a2, a3, ..., pl)
+ − bs = psd(as, pl)
+ − bs = as.psd(pl)
+ − </pre> </div>
+ − <p>
+ − <tt>a1</tt>, <tt>a2</tt>, <tt>a3</tt>, ... are <tt>ao</tt>(s) containing the input time series to be evaluated. <tt>bs</tt> includes
+ − the output object(s) and <tt>pl</tt> is an optional parameter list.
+ − </p>
+ − <h2>Parameters</h2>
+ − <p>
+ − The parameter list <tt>pl</tt> includes the following parameters:
+ − </p>
+ − <ul>
+ − <li> <tt>'Nfft'</tt> - number of samples in each fft [default: length of input data]
+ − A string value containing the variable 'fs' can
+ − also be used, e.g., plist('Nfft', '2*fs') </li>
+ − <li> <tt>'Win'</tt> - the window to be applied to the data to remove the
+ − discontinuities at edges of segments. [default: taken from user prefs].<br>
+ − The window is described by a string with its name and, only in the case of Kaiser window,
+ − the additional parameter <tt>'psll'</tt>. <br>For instance: plist('Win', 'Kaiser', 'psll', 200). </li>
+ − </li>
+ − <li> <tt>'Olap'</tt> - segment percent overlap [default: -1, (taken from window function)] </li>
+ − <li> <tt>'Scale'</tt> - scaling of output. Choose from: <ul>
+ − <li> 'ASD' - amplitude spectral density </li>
+ − <li> 'PSD' - power spectral density [default] </li>
+ − <li> 'AS' - amplitude spectrum </li>
+ − <li> 'PS' - power spectrum </li> </ul> </li>
+ − <li> <tt>'Order'</tt> - order of segment detrending <ul>
+ − <li> -1 - no detrending </li>
+ − <li> 0 - subtract mean [default] </li>
+ − <li> 1 - subtract linear fit </li>
+ − <li> N - subtract fit of polynomial, order N </li> </ul> </li>
+ − <li><tt>'Navs'</tt> - number of averages. If set, and if Nfft was set to 0 or -1, the number of points for each window will be calculated to match the request. [default: -1, not set] </li>
+ − <li><tt>'Times'</tt> - interval of time to evaluate the calculation on. If empty [default], it will take the whole section.</li>
+ − </ul>
+ − <p>
+ − The length of the window is set by the value of the parameter <tt>'Nfft'</tt>, so that the window
+ − is actually built using only the key features of the window: the name and, for Kaiser windows, the psll.
+ − </p>
+ − <p>As an alternative to setting the number of points <tt>'Nfft'</tt> in each window, it's possible to ask for a given number of PSD estimates by setting the <tt>'Navs'</tt> parameter, and the algorithm takes care of calculating the correct window length, according to the amount of overlap between subsequent segments.</p>
+ − <p>
+ − <table cellspacing="0" class="note" summary="Note" cellpadding="5" border="1">
+ − <tr width="90%">
+ − <td>
+ − If the user doesn't specify the value of a given parameter, the default value is used.
+ − </td>
+ − </tr>
+ − </table>
+ − </p>
+ − <h2>Algorithm</h2>
+ − <p>
+ − The algorithm is based in standard MATLAB's tools, as the ones used by <a href="matlab:doc('pwelch')">pwelch</a>. However, in order to
+ − compute the standard deviation of the mean for each frequency bin, the averaging of the different segments is performed using Welford's
+ − algorithm <a href="#references">[2]</a> which allows to compute mean and variance in one loop.
+ − </p>
+ − <h2>Examples</h2>
+ − <p>
+ − 1. Evaluation of the PSD of a time-series represented by a low frequency sinewave signal, superimposed to
+ − white noise. Comparison of the effect of windowing on the estimate of the white noise level and
+ − on resolving the signal.
+ − </p>
+ − <div class="fragment"><pre>
+ − <br> <span class="comment">% create two AOs</span>
+ − x1 = ao(plist(<span class="string">'waveform'</span>,<span class="string">'sine wave'</span>,<span class="string">'f'</span>,0.1,<span class="string">'A'</span>,1,<span class="string">'nsecs'</span>,1000,<span class="string">'fs'</span>,10));
+ − x2 = ao(plist(<span class="string">'waveform'</span>,<span class="string">'noise'</span>,<span class="string">'type'</span>,<span class="string">'normal'</span>,<span class="string">'nsecs'</span>,1000,<span class="string">'fs'</span>,10));
+ − <span class="comment">% add both AOs</span>
+ − x = x1 + x2;
+ − <span class="comment">% compute the psd changing the 'nfft'</span>
+ − y_lf = psd(x);
+ − y_hf = psd(x,plist(<span class="string">'nfft'</span>,1000));
+ − <span class="comment">% compare </span>
+ − iplot(y_lf, y_hf)
+ − </pre></div>
+ −
+ − <img src="images/psd_1.png" alt="" border="3">
+ −
+ − <p>
+ − 2. Evaluation of the PSD of a time-series represented by a low frequency sinewave signal, superimposed to
+ − white noise and to a low frequency linear drift. In the example, the same spectrum is computed with different
+ − spectral windows.
+ − </p>
+ − <div class="fragment"><pre>
+ − <br> <span class="comment">% create three AOs</span>
+ − x1 = ao(plist(<span class="string">'waveform'</span>,<span class="string">'sine wave'</span>,<span class="string">'f'</span>,0.1,<span class="string">'A'</span>,1,<span class="string">'nsecs'</span>,1000,<span class="string">'fs'</span>,10,<span class="string">'yunits'</span>,<span class="string">'m'</span>));
+ − x2 = ao(plist(<span class="string">'waveform'</span>,<span class="string">'noise'</span>,<span class="string">'type'</span>,<span class="string">'normal'</span>,<span class="string">'nsecs'</span>,1000,<span class="string">'fs'</span>,10,<span class="string">'yunits'</span>,<span class="string">'m'</span>));
+ − x3 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'t.^2 + t'</span>,<span class="string">'nsecs'</span>,1000,<span class="string">'fs'</span>,10,<span class="string">'yunits'</span>,<span class="string">'m'</span>));
+ − <span class="comment">% add them</span>
+ − x = x1 + x2 + x3;
+ − <span class="comment">% compute psd with different windows</span>
+ − y_1 = psd(x,plist(<span class="string">'scale'</span>,<span class="string">'ASD'</span>,<span class="string">'order'</span>,1,<span class="string">'win'</span>,<span class="string">'BH92'</span>));
+ − y_2 = psd(x,plist(<span class="string">'scale'</span>,<span class="string">'ASD'</span>,<span class="string">'order'</span>,2,<span class="string">'win'</span>,<span class="string">'Hamming'</span>));
+ − y_3 = psd(x,plist(<span class="string">'scale'</span>,<span class="string">'ASD'</span>,<span class="string">'order'</span>,2,<span class="string">'win'</span>,<span class="string">'Kaiser'</span>,<span class="string">'psll'</span>,200));
+ − <span class="comment">% compare</span>
+ − iplot(y_1, y_2, y_3);
+ − </pre></div>
+ − <p>
+ − <img src="images/psd_2.png" alt="" border="3">
+ − </p>
+ − <h2><a name="references">References</a></h2>
+ −
+ − <ol>
+ − <li> P.D. Welch, The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short,
+ − Modified Periodograms, <i>IEEE Trans. on Audio and Electroacoustics</i>, Vol. 15, No. 2 (1967), pp. 70 - 73.</a></li>
+ − <li> B. P. Weldford, Note on a Method for Calculating Corrected Sums of Squares and Products,
+ − <i>Technometrics<i>, Vol. 4, No. 3 (1962), pp 419 - 420.</li>
+ − </ol>
+ −