view m-toolbox/test/test_ao_cohere_variance_montecarlo.m @ 0:f0afece42f48
Import.
author
Daniele Nicolodi <nicolodi@science.unitn.it>
date
Wed, 23 Nov 2011 19:22:13 +0100 (2011-11-23)
parents
children
line source
+ − % test_ao_cohere_variance_montecarlo
+ − %
+ − % Tests that the standard deviation returned by ao.dy in one
+ − % frequency bin is equivalent to the matlab's std taking
+ − % considering all realisations
+ − %
+ − % M Nofrarias 22-07-09
+ − %
+ − % $Id: test_ao_cohere_variance_montecarlo.m,v 1.1 2009/08/11 14:20:10 miquel Exp $
+ −
+ − % function test_ao_cohere_variance_montecarlo()
+ −
+ − clear
+ −
+ − % data
+ − nsecs = 200;
+ − fs = 10;
+ − pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'sin(2*pi*2*t) + randn(size(t))');
+ −
+ −
+ − % Make a filter
+ − f1 = miir(plist('type', 'highpass', 'fc', 4, 'fs', fs));
+ −
+ − % Window
+ − Nfft = 100;
+ − win = specwin('Hanning', Nfft);
+ − pl2 = plist('Nfft',Nfft, 'win',win,'Olap',0)
+ −
+ − % loop
+ − for i = 1:100
+ − a1 = ao(pl);
+ − a2 = filter(a1,plist('filter', f1));
+ − c1(i) = cohere(a1,a2,plist('Nfft',100,'type','MS'));
+ − % Do with MATLAB
+ − [cxy, f] = mscohere(a1.data.y, a2.data.y, win.win, Nfft/2, Nfft, a1.data.fs);
+ − c2(i) = ao(fsdata(f, cxy));
+ − end
+ −
+ − %% mean
+ − index = 6;
+ −
+ − % compare mean
+ − mn = [mean(c1(:).y(index)) mean(c2(:).y(index))]
+ − % error
+ − err = std(c1(:).y(index))
+ − % compare standard deviation
+ − clear rel
+ − for i =1:len(c1(1))
+ − mn(i) = [mean(c1(:).y(i))]; % both means are equal
+ − rel(:,i) = [std(c1(:).y(i)) mean(c1(:).dy(i))]/abs(mn(i));
+ − end
+ −
+ − figure
+ − loglog(c1(1).x,rel')
+ − figure
+ − loglog(c1(1).x(:),100*abs(rel(2,:)-rel(1,:)))
+ − ylabel('difference (%)')
+ −