Mercurial > hg > ltpda
view m-toolbox/test/test_ao_lcpsd_variance_montecarlo.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line source
% test_ao_ltfe_variance_montecarlo % % Tests that the standard deviation returned by ao.dy in one % frequency bin is equivalent to the matlab's std taking % considering all realisations % % M Nofrarias 22-07-09 % % $Id: test_ao_lcpsd_variance_montecarlo.m,v 1.1 2009/08/11 14:20:10 miquel Exp $ % function test_ao_ltfe_variance_montecarlo() clear % data nsecs = 200; fs = 10; pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'sin(2*pi*2*t) + randn(size(t))'); % Make a filter f1 = miir(plist('type', 'highpass', 'fc', 4, 'fs', fs)); % Window Nfft = 1000; win = specwin('Hanning', Nfft); pl2 = plist('Lmin',200,'win',win,'Olap',-1) % loop for i = 1:100 a1 = ao(pl); a2 = filter(a1,plist('filter', f1)); t1(i) = lcpsd(a1,a2,pl2); end %% mean index = 6; clear rel for i =1:len(t1(1)) mn(i) = [mean(t1(:).y(i))]; % both means are equal rel(:,i) = [std(t1(:).y(i)) mean(t1(:).dy(i))]/abs(mn(i)); end k = find(t1(1).procinfo,'k') figure loglog(t1(1).x,rel') figure loglog(t1(1).x,abs(rel(2,:)-rel(1,:)))