Mercurial > hg > ltpda
view m-toolbox/test/utils/test_2dim_vcfit.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % TEST Fitting procedure in 2dim z-domain VDFIT % At the end you have 4 stable transfer functions in partial fractions % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HISTORY: 02-10-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% VERSION '$Id: test_2dim_vcfit.m,v 1.1 2009/04/23 10:11:26 luigi Exp $'; %% Clear clear all %% Loading spectra load ..\m-toolbox\test\mpsd.mat % load mpsd.mat first column is f then psd1, csd and psd2 f = mpsd(:,1); psd1 = mpsd(:,2); csd = mpsd(:,3); psd2 = mpsd(:,4); fs = 10; %% Eigendecomposition [tf11,tf12,tf21,tf22] = utils.math.eigcsd(psd1,csd,conj(csd),psd2); %% Constructing vector f1 = [tf11 tf21]; f2 = [tf12 tf22]; %% VCFIT N = 26; %Order of approximation % Max Iteration Nmaxiter = 70; % Fitting params fitin.stable = 0; fitin.dterm = 0; fitin.plot = 0; weight = utils.math.wfun(f1,2); % weight = 1./abs(f1); pparams = struct('spolesopt',2, 'type','CONT', 'pamp', 0.01); poles1 = utils.math.startpoles(N,f,pparams); for hh = 1:Nmaxiter [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.vcfit(f1,f,poles1,weight,fitin); % Fitting % disp(['Iter' num2str(hh)]) % Stop condition checking order = length(poles1); mlr1(hh) = mse1(:,1); mlr2(hh) = mse1(:,2); % [ext1,msg1] = stopfit(f1(:,1),rdl1(:,1),mlr1,order,'mlsrvar',2,0.0001,2); % [ext2,msg2] = stopfit(f1(:,2),rdl1(:,2),mlr2,order,'mlsrvar',2,0.0001,2); % % if ext1 && ext2 % disp(msg1) % break % end end % plotting squared error figure() semilogy(mlr1,'-ok') hold on grid on semilogy(mlr2,'-or') % % plotting RMS error variation % figure() % semilogy(abs(diff(sqrt(mlr1))),'-ok') % hold on % grid on % semilogy(abs(diff(sqrt(mlr2))),'-or') % plotting squared error variation figure() semilogy(abs(diff(mlr1)./mlr1(1,end-1)),'-ok') hold on grid on semilogy(abs(diff(mlr2)./mlr2(1,end-1)),'-or') %% All Passing [np1,resp1] = pfallps(res1,poles1,dterm1,mresp1,f); figure() subplot(2,1,1); p1 = loglog(f,abs(mresp1),'k'); hold on p2 = loglog(f,abs(resp1),'r'); xlabel('Frequency [Hz]') ylabel('Amplitude') legend([p1(1) p2(1)],'VDFIT','Stabilized') hold off subplot(2,1,2); p4 = semilogx(f,(180/pi).*unwrap(angle(mresp1)),'k'); hold on p5 = semilogx(f,(180/pi).*unwrap(angle(resp1)),'r'); xlabel('Frequency [Hz]') ylabel('Phase [Deg]') legend([p4(1) p5(1)],'VDFIT', 'Stabilized') hold off %% VCFIT N = 14; %Order of approximation % Max Iteration Nmaxiter = 50; % Fitting params fitin.stable = 0; fitin.dterm = 0; fitin.plot = 1; weight = wfun(f2,1); pparams = struct('spolesopt',1, 'type','CONT', 'pamp', 0.01); poles2 = startpoles(N,f,pparams); for hh = 1:Nmaxiter [res2,poles2,dterm2,mresp2,rdl2] = vcfit(f2,f,poles2,weight,fitin); % Fitting disp(['Iter' num2str(hh)]) % Stop condition checking order = length(poles1); mlr1(hh) = mean(log10(abs(f2(:,1)))-log10(abs(rdl2(:,1)))); mlr2(hh) = mean(log10(abs(f2(:,2)))-log10(abs(rdl2(:,2)))); [ext1,msg1] = stopfit(f2(:,1),rdl2(:,1),mlr1,order,'mlrsvar',2,0.0001,2); [ext2,msg2] = stopfit(f2(:,2),rdl2(:,2),mlr2,order,'mlrsvar',2,0.0001,2); if ext1 && ext2 disp(msg1) break end end