Mercurial > hg > ltpda
view m-toolbox/test/utils/test_autodfit.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Test script for autodfit % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HISTORY: 12-09-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% VERSION '$Id: test_autodfit.m,v 1.1 2009/04/23 10:11:26 luigi Exp $'; %% Cleaning clear all %% data % % frequencies % f = logspace(-6,log10(5),300); % frequency vector in Hz % f = f.'; % fs = 10; % % Continuous rational transfer function % Num = [-2.726e-007; 1.665e-005; 1.303e-007; 8.381e-010]; % Numerator % Den = [1; 0.2189; 0.01922; 0.0007803; 0]; % Denominator % y = freqs(Num,Den,w); % % filt1 % dRes = [0.2+j*0.003;0.2-j*0.003;0.45+j*0.0007;0.45-j*0.0007]; % dPoles = [0.97+j*0.0003;0.97-j*0.0003;0.75+j*0.00005;0.75-j*0.00005]; % dDTerms = 0; % % filt2 % dRes = [0.2+j*0.003;0.2-j*0.003;0.45+j*0.0007;0.45-j*0.0007;12;0.45+j*0.07;0.45-j*0.07]; % dPoles = [0.97+j*0.0003;0.97-j*0.0003;0.75+j*0.00005;0.75-j*0.00005;0.1;0.998+j*0.00005;0.998-j*0.00005]; % dDTerms = 0; % % Model aStefano Tf11 % dRes = [2.44554138162509e-011 - 1.79482547894083e-011i; % 2.44554138162509e-011 + 1.79482547894083e-011i; % 2.66402334803101e-009 + 1.1025122049153e-009i; % 2.66402334803101e-009 - 1.1025122049153e-009i; % -7.3560293387644e-009; % -1.82811618589835e-009 - 1.21803627800855e-009i; % -1.82811618589835e-009 + 1.21803627800855e-009i; % 1.16258677367555e-009; % 1.65216557639319e-016; % -1.78092396888606e-016; % -2.80420398962379e-017; % 9.21305973049041e-013 - 8.24686706827269e-014i; % 9.21305973049041e-013 + 8.24686706827269e-014i; % 5.10730060739905e-010 - 3.76571756625722e-011i; % 5.10730060739905e-010 + 3.76571756625722e-011i; % 3.45893698149735e-009; % 3.98139182134446e-014 - 8.25503935419059e-014i; % 3.98139182134446e-014 + 8.25503935419059e-014i; % -1.40595719147164e-011]; % % dPoles = [0.843464045655194 - 0.0959986292915475i; % 0.843464045655194 + 0.0959986292915475i; % 0.953187595424927 - 0.0190043625473383i; % 0.953187595424927 + 0.0190043625473383i; % 0.967176277937188; % 0.995012027005247 - 0.00268322602801729i; % 0.995012027005247 + 0.00268322602801729i; % 0.996564761885673; % 0.999999366165445; % 0.999981722418555; % 0.999921882627659; % 0.999624431675213 - 0.000813407848742761i; % 0.999624431675213 + 0.000813407848742761i; % 0.997312006278751 - 0.00265611346834941i; % 0.997312006278751 + 0.00265611346834941i; % 0.990516544257531; % 0.477796923118318 - 0.311064085401834i; % 0.477796923118318 + 0.311064085401834i; % 0]; % % dDTerms = 0; % % Model Stefano TF12 % dRes = [1.44258422208796e-017 + 7.07359428613009e-019i; % 1.44258422208796e-017 - 7.07359428613009e-019i; % -3.4918408053655e-021 - 1.05662874569329e-021i; % -3.4918408053655e-021 + 1.05662874569329e-021i; % -7.61773292876976e-021; % 4.84357724603939e-020 + 2.38824204294595e-019i; % 4.84357724603939e-020 - 2.38824204294595e-019i; % -4.07088520945753e-020 - 2.31474543846105e-019i; % -4.07088520945753e-020 + 2.31474543846105e-019i; % 8.73316588658882e-023; % -5.21840635377469e-020; % 1.8461911504859e-023; % 5.20105247464461e-020; % -4.68960092394415e-022; % -1.44261407664171e-017 + 6.8922564526833e-019i; % -1.44261407664171e-017 - 6.8922564526833e-019i; % 3.13688133935426e-022]; % % dPoles = [0.477546340377332 - 0.310830571032376i; % 0.477546340377332 + 0.310830571032376i; % 0.99790715414307 - 0.0028490561287024i; % 0.99790715414307 + 0.0028490561287024i; % 0.998014205354671 ; % 0.999585354543332 - 0.000780408757425194i; % 0.999585354543332 + 0.000780408757425194i; % 0.99966003029931 - 0.000830944038363768i; % 0.99966003029931 + 0.000830944038363768i; % 0.999962770401331 ; % 0.999981881865521 ; % 0.999999365763457 ; % 0.999981706320212 ; % 0.99992421574188 ; % 0.477898460791003 + 0.311001926610074i; % 0.477898460791003 - 0.311001926610074i; % 0]; % dDTerms = 0; % % Model Stefano Tf21 % dRes = [-1.80035241582968e-016 + 1.99543917791863e-015i; % -1.80035241582968e-016 - 1.99543917791863e-015i; % -1.85590889333759e-013 - 1.23844418827409e-014i; % -1.85590889333759e-013 + 1.23844418827409e-014i; % 5.03656596876842e-013 ; % -2.62470963499904e-013 + 2.30024232938878e-012i; % -2.62470963499904e-013 - 2.30024232938878e-012i; % -9.83780507870955e-018 ; % 3.40426735130194e-021 ; % 9.78322351492755e-018 ; % -1.65010934542937e-020 ; % 2.60918565203438e-015 + 1.0546609464659e-015i; % 2.60918565203438e-015 - 1.0546609464659e-015i; % 3.18105585405455e-014 + 2.48839990780042e-013i; % 3.18105585405455e-014 - 2.48839990780042e-013i; % 3.23021641947666e-013 ; % 4.81265000078114e-016 - 3.18269170053848e-017i; % 4.81265000078114e-016 + 3.18269170053848e-017i; % 5.16260024128201e-018]; % % dPoles = [0.872004077421604 - 0.110344282822693i; % 0.872004077421604 + 0.110344282822693i; % 0.956884129232757 - 0.0225532091775074i; % 0.956884129232757 + 0.0225532091775074i; % 0.966514825697177 ; % 0.995140550419744 - 0.000755127639524413i; % 0.995140550419744 + 0.000755127639524413i; % 0.999981802194393 ; % 0.99999936576546 ; % 0.999981722418555 ; % 0.999921882627659 ; % 0.999624431675213 + 0.000813407848742761i; % 0.999624431675213 - 0.000813407848742761i; % 0.997312006278751 + 0.00265611346834941i; % 0.997312006278751 - 0.00265611346834941i; % 0.990516544257531 ; % 0.477796923118318 + 0.311064085401834i; % 0.477796923118318 - 0.311064085401834i; % 0]; % % dDTerms = 0; % % Model Stefano Tf22 % dRes = [1.1284521501259e-014; % -3.72133611555879e-014 - 2.08232683444075e-014i; % -3.72133611555879e-014 + 2.08232683444075e-014i; % 9.84930639106637e-014 - 1.46640810672565e-013i; % 9.84930639106637e-014 + 1.46640810672565e-013i; % 2.51323684013671e-014 ; % -5.64078525288305e-014 ; % -1.62476406586366e-014 ; % -1.08424815979566e-011 + 8.32328079357669e-012i; % -1.08424815979566e-011 - 8.32328079357669e-012i; % 2.41831559776112e-011]; % % dPoles = [0.988511243978897; % 0.997305870640646 + 0.00211760900132725i; % 0.997305870640646 - 0.00211760900132725i; % 0.999626453270255 + 0.0008125673525946i; % 0.999626453270255 - 0.0008125673525946i; % 0.999999366366222 ; % 0.999981706320212 ; % 0.99992421574188 ; % 0.477898460791003 - 0.311001926610074i; % 0.477898460791003 + 0.311001926610074i; % 0]; % % dDTerms = 0; % % filt4 % dRes = [2.44554138162509e-011; % 2.66402334803101e-009; % -7.3560293387644e-009; % -1.82811618589835e-009; % 1.16258677367555e-009; % 1.65216557639319e-016; % -1.78092396888606e-016; % -2.80420398962379e-017; % 9.21305973049041e-013; % 5.10730060739905e-010; % 3.45893698149735e-009; % 3.98139182134446e-014; % -1.40595719147164e-011]; % % dPoles = [0.843464045655194; % 0.953187595424927; % 0.967176277937188; % 0.995012027005247; % 0.996564761885673; % 0.999999366165445; % 0.999981722418555; % 0.999921882627659; % 0.999624431675213; % 0.997312006278751; % 0.990516544257531; % 0.477796923118318; % 0]; % % dDTerms = 0; % % % pfparams.type = 'disc'; % pfparams.freq = f; % pfparams.fs = fs; % pfparams.res = dRes; % pfparams.pol = dPoles; % pfparams.dterm = dDTerms; % % % response of the model filter % pfr = pfresp(pfparams); % y = pfr.resp; % % Model Continuous minphase % r = [1.4871879011802e-005; % 6.10992134443159e-016 - 9.32963644121133e-014i; % 6.10992134443159e-016 + 9.32963644121133e-014i; % 6.5700947750201e-017 - 8.67535202691611e-015i; % 6.5700947750201e-017 + 8.67535202691611e-015i; % 7.60899607753932e-017 - 2.31523533550992e-015i; % 7.60899607753932e-017 + 2.31523533550992e-015i; % 7.81925532239946e-010 - 5.60617358881436e-009i; % 7.81925532239946e-010 + 5.60617358881436e-009i; % -1.36723085989008e-009 + 5.08414219753465e-009i; % -1.36723085989008e-009 - 5.08414219753465e-009i; % -8.98316119086409e-009 - 2.15634331132174e-007i; % -8.98316119086409e-009 + 2.15634331132174e-007i; % 9.22133132976409e-009 - 3.24455764655643e-008i; % 9.22133132976409e-009 + 3.24455764655643e-008i; % 6.27280610849718e-011 - 1.19002054635157e-009i; % 6.27280610849718e-011 + 1.19002054635157e-009i; % 3.28962376794087e-010 - 3.35707070704021e-010i; % 3.28962376794087e-010 + 3.35707070704021e-010i]; % % p = [-1878769.47366179; % -9.61587854136845e-006 + 4.02759537557155e-008i; % -9.61587854136845e-006 - 4.02759537557155e-008i; % -3.97325785368196e-005 + 7.21480997398869e-007i; % -3.97325785368196e-005 - 7.21480997398869e-007i; % -0.00016489329503076 + 4.21265809470161e-006i; % -0.00016489329503076 - 4.21265809470161e-006i; % -0.0488243534364908 + 0.00506677723199764i; % -0.0488243534364908 - 0.00506677723199764i; % -0.060222623381404 + 0.0123923197320473i; % -0.060222623381404 - 0.0123923197320473i; % -0.404482556535086 + 0.0153085700658377i; % -0.404482556535086 - 0.0153085700658377i; % -0.955593480749454 + 0.0869402878111827i; % -0.955593480749454 - 0.0869402878111827i; % -2.56698459926376 + 0.591616326379104i; % -2.56698459926376 - 0.591616326379104i; % -4.4135552953192 + 0.652758967843539i; % -4.4135552953192 - 0.652758967843539i]; % % d = 0; % % f = logspace(-6,log10(5),300); % frequency vector in Hz % f = f.'; % pfparams.type = 'cont'; % pfparams.freq = f; % pfparams.res = r; % pfparams.pol = p; % pfparams.dterm = d; % % % response of the model filter % pfr = pfresp(pfparams); % y = pfr.resp; %% psd load ..\m-toolbox\test\mpsd.mat % load mpsd.mat first column is f then psd1, csd and psd2 f = mpsd(:,1); % psd = mpsd(:,2:4); psd = mpsd(:,2); y = abs(sqrt(psd)); %% auto search for the order fs = 10; % Sampling frequency in Hz % Fitting params params = struct('spolesopt',2, 'Nmaxiter',70, 'minorder',24,... 'maxorder',35, 'weightparam',1, 'plot',0,... 'ctp','chivar','lrscond',5,'msevar',2,... 'stabfit',0,'dterm',0,'spy',1); [res,poles,dterm,mresp,rdl,mse] = utils.math.autodfit(y,f,fs,params); %% comparison figure() subplot(2,1,1); loglog(f,abs(y),'k') hold on loglog(f,abs(mresp),'r') xlabel('Frequency [Hz]') ylabel('Amplitude') legend('Original', 'CTFIT') subplot(2,1,2); semilogx(f,angle(y),'k') hold on semilogx(f,angle(mresp),'r') xlabel('Frequency [Hz]') ylabel('Amplitude') legend('Original', 'CTFIT') % plotting mean squared error figure() semilogy(mse,'-ok') % hold on % grid on % semilogy(mlr2,'-or') % plotting squared error variation figure() semilogy(abs(diff(mse)./mse(1:end-1)),'-ok') % hold on % grid on % semilogy(abs(diff(mlr2)),'-or')