Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/cdfplot.m @ 42:f90d4f666cc7 database-connection-manager
Cleanup
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 18:04:34 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% CDFPLOT makes cumulative distribution plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % h = cdfplot(y1,[],ops) Plot an empirical cumulative distribution function % against a theoretical cdf. % % h = cdfplot(y1,y2,ops) Plot two empirical cumulative distribution % functions. Cdf for y1 is compared against cdf for y2 with confidence % bounds. % % ops is a cell aray of options % - 'ProbDist' -> theoretical distribution. Available distributions are: % - 'Fdist' -> F cumulative distribution function. In this case the % parameter 'params' should be a vector with distribution degrees of % freedoms [dof1 dof2] % - 'Normdist' -> Normal cumulative distribution function. In this case % the parameter 'params' should be a vector with distribution mean and % standard deviation [mu sigma] % - 'Chi2dist' -> Chi square cumulative distribution function. In this % case the parameter 'params' should be a number indicating % distribution degrees of freedom % - 'GammaDist' -> Gamma distribution. 'params' should contain the % shape and scale parameters % - 'ShapeParam' -> In the case of comparison of a data series with a % theoretical distribution and the data series is composed of correlated % elements. K can be adjusted with a shape parameter in order to recover % test fairness. In such a case the test is performed for K* = Phi *K. % Phi is the corresponding Shape parameter. The shape parameter depends % on the correlations and on the significance value. It does not depend % on data length. % - 'params' -> Probability distribution parameters % - 'conflevel' -> requiered confidence for confidence bounds evaluation. % Default 0.95 (95%) % - 'FontSize' -> Font size for axis. Default 22 % - 'LineWidth' -> line width. Default 2 % - 'axis' -> set axis properties of the plot. refer to help axis for % further details % % Luigi Ferraioli 10-02-2011 % % % $Id: cdfplot.m,v 1.8 2011/07/08 09:45:48 luigi Exp $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = cdfplot(y1,y2,ops) %%% check and set imput options % Default input struct defaultparams = struct(... 'ProbDist','Fdist',... 'ShapeParam',1,... 'params',[1 1],... 'conflevel',0.95,... 'FontSize',22,... 'LineWidth',2,... 'axis',[]); names = {'ProbDist','ShapeParam','params','conflevel','FontSize','LineWidth','axis'}; % collecting input and default params if nargin == 3 if ~isempty(ops) for jj=1:length(names) if isfield(ops, names(jj)) defaultparams.(names{1,jj}) = ops.(names{1,jj}); end end end end pdist = defaultparams.ProbDist; % check theoretical distribution shp = defaultparams.ShapeParam; dof = defaultparams.params; % distribution parameters conf = defaultparams.conflevel; % confidence level for confidence bounds calculation if conf>1 conf = conf/100; end fontsize = defaultparams.FontSize; lwidth = defaultparams.LineWidth; axvect = defaultparams.axis; %%% check data input if isempty(y2) % do theoretical comparison % get empirical distribution for input data [eCD,ex]=utils.math.ecdf(y1); % switch between input theoretical distributions switch lower(pdist) case 'fdist' CD = utils.math.Fcdf(ex,dof(1),dof(2)); case 'normdist' CD = utils.math.Normcdf(ex,dof(1),dof(2)); case 'chi2dist' CD = utils.math.Chi2cdf(ex,dof(1)); case 'gammadist' CD = gammainc(ex./dof(2),dof(1)); end % get confidence levels with Kolmogorow - Smirnov test alp = (1-conf)/2; cVal = utils.math.SKcriticalvalues(numel(ex)*shp,[],alp); % get confidence levels CDu = CD+cVal; CDl = CD-cVal; figure; h = stairs(ex,[eCD CD CDu CDl]); grid on xlabel('x','FontSize',fontsize); ylabel('F(x)','FontSize',fontsize); set(h(3:4), 'Color','b', 'LineStyle',':','LineWidth',lwidth); set(h(1), 'Color','r', 'LineStyle','-','LineWidth',lwidth); set(h(2), 'Color','k', 'LineStyle','--','LineWidth',lwidth); legend([h(1),h(2),h(3)],{'eCDF','CDF','Conf. Bounds'}); if ~isempty(axvect) axis(axvect); else % get limit for quantiles corresponding to 0 and 0.99 prob xlw = interp1(eCD,ex,0.001,'linear'); if isnan(xlw) xlw = min(ex); end xup = interp1(eCD,ex,0.999,'linear'); axis([xlw xup 0 1]); end else % do empirical comparison % get empirical distribution for input data [eCD1,ex1]=utils.math.ecdf(y1); [eCD2,ex2]=utils.math.ecdf(y2); % get confidence levels with Kolmogorow - Smirnov test alp = (1-conf)/2; cVal = utils.math.SKcriticalvalues(numel(ex1),numel(ex2),alp); % get confidence levels CDu = eCD2+cVal; CDl = eCD2-cVal; figure; h1 = stairs(ex1,eCD1); grid on hold on h2 = stairs(ex2,[eCD2 CDu CDl]); xlabel('x','FontSize',fontsize); ylabel('F(x)','FontSize',fontsize); set(h2(2:3), 'Color','b', 'LineStyle',':','LineWidth',lwidth); set(h1(1), 'Color','r', 'LineStyle','-','LineWidth',lwidth); set(h2(1), 'Color','k', 'LineStyle','--','LineWidth',lwidth); legend([h1(1),h2(1),h2(2)],{'eCDF1','eCDF2','Conf. Bounds'}); if ~isempty(axvect) axis(axvect); else % get limit for quantiles corresponding to 0 and 0.99 prob xlw = interp1(eCD2,ex2,0.001,'linear'); if isnan(xlw) xlw = min(ex2); end xup = interp1(eCD2,ex2,0.999,'linear'); axis([xlw xup 0 1]); end h = [h1; h2]; end end