Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/linlsqsvd.m @ 42:f90d4f666cc7 database-connection-manager
Cleanup
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 18:04:34 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% LINLSQSVD Linear least squares with singular value decomposition %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: Linear least square problem with singular value % decomposition % % ALGORITHM: % It solves the problem % % Y = HX % % where X are the parameters, Y the measurements, and H the linear % equations relating the two. % It is able to perform linear identification of the parameters of a % multichannel systems. The results of different experiments on the same % system can be passed as input. The algorithm, thanks to the singular % value decomposition, extract the maximum amount of information from each % single channel and for each experiment. Total information is then % combined to get the final result. % % CALL: [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = utils.math.linlsqsvd(H1,...,HN,Y); % [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = utils.math.linlsqsvd(H1,...,HN,Y,errthres); % [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = utils.math.linlsqsvd(H1,...,HN,Y,errthres,knwpars); % % If the experiment is 1 then H1,...,HN and Y are aos. % If the experiments are M, then H1,...,HN and Y are Mx1 matrix objects % with the aos relating to the given experiment in the proper position. % % INPUT: % - Hi represent the columns of H % - Y represent the measurement set % - sThreshold it's a threshold for singular values. It is a % number, typically 1. It will remove singular values larger % than sThreshold which corresponds to removing svd parameters estimated % with an error larger than sThreshold. % - knwpars A struct array with the fields: % pos - a number indicating the corresponding position of % the parameter (corresponding column of H) % value - the value for the parameter % err - the uncertainty associated to the parameter % % OUTPUT: % a: params values % Ca: fit covariance matrix for A % Corra: fit correlation matrix for A % Vu: is the complete conversion matrix % Cbu: is the new variables covariance matrix % Fbu: is the information matrix for the new variable % mse: is the fit Mean Square Error % dof: degrees of freedom for the global estimation % ppm: number of svd parameters per measurements, provides also the % number of independent combinations of parameters per each singular % measurement. The coefficients of the combinations are then stored in Vu % % 09-11-2010 L Ferraioli % CREATION % % <a href="matlab:utils.helper.displayMethodInfo('matrix', 'linfitsvd')">Parameter Sets</a> % % VERSION: $Id: linlsqsvd.m,v 1.2 2011/03/11 09:28:26 luigi Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = linlsqsvd(varargin) %%% get input params if isstruct(varargin{end}) kwnpars = varargin{end}; if isnumeric(varargin{end-1}) sThreshold = varargin{end-1}; A = varargin{1:end-2}; else A = varargin{1:end-1}; sThreshold = []; end else kwnpars = []; if isnumeric(varargin{end}) sThreshold = varargin{end}; A = varargin{1:end-1}; else A = varargin{:}; sThreshold = []; end end %%% sort between one or multiple experiments exps = struct; if isa(A(1),'ao') % one experiment % Build matrices for lscov C = A(1:end-1); Y = A(end); H = C(:).y; y = Y.y; exps.fitbasis = H; exps.fitdata = y; elseif isa(A(1),'matrix') % multiple experiments % run over input objects and experiments for jj=1:numel(A(1).objs) C = []; for ii=1:numel(A)-1 D = A(ii).objs(jj).y; % willing to work with columns if size(D,1)<size(D,2) D = D.'; end C = [C D]; end y = A(end).objs(jj).y; exps(jj).fitbasis = C; exps(jj).fitdata = y; end else error('Unknown input data type!') end %%% do fit if ~isempty(kwnpars) && isfield(kwnpars,'pos') if ~isempty(sThreshold) [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = utils.math.linfitsvd(exps,kwnpars,sThreshold); else [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = utils.math.linfitsvd(exps,kwnpars); end else if ~isempty(sThreshold) [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = utils.math.linfitsvd(exps,sThreshold); else [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = utils.math.linfitsvd(exps); end end end