Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/fisher_2x2.m @ 9:fbbfcd56e449 database-connection-manager
Remove dead code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Compute Fisher matrix % % Parameters are: % i1 - input 1st channel (ao) % i2 - input 2nd channel (ao) % n - noise both channels (matrix 2x1) % mdl - model (matrix or ssm) % params - parameters % numparams - numerical value of parameters % freqs - frequnecies being evaluated % N - number of fft frequencies % pl - plist % % M Nofrarias 15-06-09 % % $Id: fisher_2x2.m,v 1.3 2011/09/19 06:19:13 miquel Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function FisMat = fisher_2x2(i1,i2,n,mdl,params,numparams,freqs,N,pl,inNames,outNames) import utils.const.* % Compute psd n1 = psd(n.getObjectAtIndex(1,1), pl); n2 = psd(n.getObjectAtIndex(2,1), pl); n12 = cpsd(n.getObjectAtIndex(1,1),n.getObjectAtIndex(2,1), pl); % interpolate to given frequencies % noise S11 = interp(n1,plist('vertices',freqs)); S12 = interp(n12,plist('vertices',freqs)); S22 = interp(n2,plist('vertices',freqs)); S21 = conj(S12); % get some parameters used below fs = S11.fs; if ~isempty(mdl) && all(strcmp(class(mdl),'matrix')) % compute built-in matrix for i = 1:numel(mdl.objs) % set Xvals h(i) = mdl.getObjectAtIndex(i).setXvals(freqs); % set alias h(i).assignalias(mdl.objs(i),plist('xvals',freqs)); % set paramaters h(i).setParams(params,numparams); end % differentiate and eval for i = 1:length(params) utils.helper.msg(msg.IMPORTANT, sprintf('computing symbolic differentiation with respect %s',params{i}), mfilename('class'), mfilename); % differentiate symbolically dH11 = diff(h(1),params{i}); dH12 = diff(h(3),params{i}); % taking into account matrix index convention h(2) > H(2,1) dH21 = diff(h(2),params{i}); dH22 = diff(h(4),params{i}); % evaluate d11(i) = eval(dH11); d12(i) = eval(dH12); d21(i) = eval(dH21); d22(i) = eval(dH22); end elseif ~isempty(mdl) && all(strcmp(class(mdl),'ssm')) meval = copy(mdl,1); % set parameter values meval.doSetParameters(params, numparams); % get the differentiation step step = find(pl,'step'); % case no diff. step introduced if isempty(step) utils.helper.msg(msg.IMPORTANT, ... sprintf('computing optimal differentiation steps'), mfilename('class'), mfilename); ranges = find(pl,'stepRanges'); if isempty(ranges) error('### Please input upper and lower ranges for the parameters: ''ranges''') end ngrid = find(pl,'ngrid'); if isempty(ngrid) error('### Please input a number of points for the grid to compute the diff. step : ''ngrid''') end % look for numerical differentiation step step = utils.math.diffStepFish(i1,i2,S11,S12,S21,S22,N,meval,params,ngrid,ranges,freqs,inNames,outNames); end % differentiate and eval for i = 1:length(params) utils.helper.msg(msg.IMPORTANT, ... sprintf('computing numerical differentiation with respect %s, Step:%4.2d ',params{i},step(i)), mfilename('class'), mfilename); % differentiate numerically dH = meval.parameterDiff(plist('names', params(i),'values',step(i))); % create plist with correct outNames (since parameterDiff change them) out1 = strrep(outNames{1},'.', sprintf('_DIFF_%s.',params{i})); % 2x2 case out2 =strrep(outNames{2},'.', sprintf('_DIFF_%s.',params{i})); spl = plist('set', 'for bode', ... 'outputs', {out1,out2}, ... 'inputs', inNames, ... 'reorganize', true,... 'f', freqs); % do bode d = bode(dH, spl); % assign according matlab's matrix notation: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) d11(i) = d.objs(1); d21(i) = d.objs(2); d12(i) = d.objs(3); d22(i) = d.objs(4); end else error('### please introduce models for the transfer functions') end % scaling of PSD % PSD = 2/(N*fs) * FFT *conj(FFT) C11 = N*fs/2.*S11.y; C22 = N*fs/2.*S22.y; C12 = N*fs/2.*S12.y; C21 = N*fs/2.*S21.y; % compute elements of inverse cross-spectrum matrix InvS11 = (C22./(C11.*C22 - C12.*C21)); InvS22 = (C11./(C11.*C22 - C12.*C21)); InvS12 = (C21./(C11.*C22 - C12.*C21)); InvS21 = (C12./(C11.*C22 - C12.*C21)); % compute Fisher Matrix for i =1:length(params) for j =1:length(params) v1v1 = conj(d11(i).y.*i1.y + d12(i).y.*i2.y).*(d11(j).y.*i1.y + d12(j).y.*i2.y); v2v2 = conj(d21(i).y.*i1.y + d22(i).y.*i2.y).*(d21(j).y.*i1.y + d22(j).y.*i2.y); v1v2 = conj(d11(i).y.*i1.y + d12(i).y.*i2.y).*(d21(j).y.*i1.y + d22(j).y.*i2.y); v2v1 = conj(d21(i).y.*i1.y + d22(i).y.*i2.y).*(d11(j).y.*i1.y + d12(j).y.*i2.y); FisMat(i,j) = sum(real(InvS11.*v1v1 + InvS22.*v2v2 - InvS12.*v1v2 - InvS21.*v2v1)); end end end