Fix. Default password should be [] not an empty string
line source
+ − % CONSOLIDATE resamples all input AOs onto the same time grid.
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % CONSOLIDATE resamples all input AOs onto the same time grid and truncates all
+ − % time-series to start at the maximum start time of the inputs and end
+ − % at the minimum stop time of the inputs.
+ − %
+ − % ALGORITHM:
+ − % 1) Drop duplicate samples (ao/dropduplicates)
+ − % 2) Interpolate missing samples (ao/interpmissing)
+ − % 3) Fix uneven sample rate using interpolate (ao/fixfs)
+ − % 4) Resample to same fs, either max or specified (ao/resample
+ − % or ao/interp depending on ratio of old and new sample
+ − % rate)
+ − % 5) Truncate all vectors to minimum overlap of time-series
+ − % (ao/split)
+ − % 6) Resample on to the same timing grid (ao/interp)
+ − % 7) Truncate all vectors to same number of samples to correct for
+ − % any rounding errors in previous steps (ao/select)
+ − %
+ − % CALL: >> bs = consolidate(as)
+ − %
+ − % INPUTS: as - array of at least two time-series analysis objects
+ − % pl - parameter list (see below)
+ − %
+ − % OUTPUTS: bs - array of analysis objects, one for each input
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('ao', 'consolidate')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: consolidate.m,v 1.32 2011/04/08 08:56:13 hewitson Exp $
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − % 't' - specify a new time vector to resample on to. This
+ − % will be truncated to fit within the maximum start
+ − % time and minimum stop time of the inputs.
+ − % or
+ −
+ − function varargout = consolidate(varargin)
+ −
+ − % Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − import utils.const.*
+ − utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all AOs and plists
+ − [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
+ − [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names);
+ −
+ − if numel(as) < 2
+ − error('### Consolidate requires at least two time-series AOs to work.');
+ − end
+ −
+ − if nargout == 0
+ − error('### Consolidate cannot be used as a modifier. Please give an output variable.');
+ − end
+ −
+ − % Decide on a deep copy or a modify
+ − bs = copy(as, nargout);
+ − na = numel(bs);
+ −
+ − % Combine plists
+ − pl = parse(pl, getDefaultPlist);
+ −
+ − % Get only tsdata AOs
+ − inhists = [];
+ − for j=1:na
+ − if ~isa(bs(j).data, 'tsdata')
+ − bs(j) = [];
+ − warning('!!! Skipping AO %s - it''s not a time-series AO.', bs(j).name);
+ − else
+ − % gather the input history objects
+ − inhists = [inhists bs(j).hist];
+ − end
+ − end
+ −
+ − % If fs is specified, use it. Otherwise, use max of all
+ − % input AOs.
+ − fs = find(pl, 'fs');
+ − if isempty(fs)
+ − % compute max fs
+ − fs = 0;
+ − for j=1:na
+ − if bs(j).data.fs > fs
+ − fs = bs(j).data.fs;
+ − end
+ − end
+ − end
+ − utils.helper.msg(msg.PROC2, 'resampling all time-series to an fs of %f', fs);
+ −
+ − %----------------- Drop all repeated samples
+ − utils.helper.msg(msg.PROC1, 'drop duplicates');
+ − for j=1:na
+ − utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name);
+ − dropduplicates(bs(j),pl);
+ − end
+ −
+ − %----------------- Interpolate all missing samples
+ − utils.helper.msg(msg.PROC1, 'interpolate missing samples');
+ − for j=1:na
+ − utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name);
+ − interpmissing(bs(j),pl.pset('method', find(pl, 'interp_method')));
+ − end
+ −
+ −
+ − %----------------- Fix uneven sampling
+ − utils.helper.msg(msg.PROC1, 'fixing uneven sample rates');
+ − for j=1:na
+ − utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name);
+ − fixfs(bs(j),pl.pset('method', find(pl, 'fixfs_method')));
+ − end
+ − %----------------- Resample all vectors to same fs
+ − utils.helper.msg(msg.PROC1, 'resample to same fs');
+ −
+ − for j=1:na
+ − % Check the resampling factor
+ − [P,Q] = utils.math.intfact(fs,bs(j).data.fs);
+ − if P > 100 || Q > 100
+ − utils.helper.msg(msg.PROC2, 'resampling factor too high [%g/%g]. Trying interpolation', P, Q);
+ − N = length(bs(j).data.getX);
+ − t = linspace(0, (P*N/Q-1)/fs, P*N/Q);
+ − interp(bs(j), plist('vertices', t));
+ − else
+ − resample(bs(j), plist('fsout', fs));
+ − end
+ − end
+ −
+ − %---------------- Time properties of AOs
+ − % Find max start time
+ − start = 0;
+ − for j=1:na
+ − dstart = bs(j).data.t0.utc_epoch_milli/1000 + bs(j).data.getX(1);
+ − if dstart > start
+ − start = dstart;
+ − end
+ − end
+ −
+ − % Find min stop time
+ − stop = 1e20;
+ − for j=1:na
+ − dstop = floor(bs(j).data.t0.utc_epoch_milli/1000 + bs(j).data.getX(end));
+ − if dstop < stop
+ − stop = dstop;
+ − end
+ − end
+ −
+ − %----------------- Truncate all vectors
+ − utils.helper.msg(msg.PROC1, 'truncate all vectors');
+ − utils.helper.msg(msg.PROC2, 'truncating vectors on interval [%.4f,%.4f]', start, stop);
+ −
+ − % split each ao
+ − bs = split(bs, plist('timespan', timespan(start, stop)));
+ −
+ − %----------------- Resample all vectors on to the same grid
+ − utils.helper.msg(msg.PROC1, 'resample to same grid');
+ − % compute new time grid
+ −
+ − % get the grid from the first AO
+ − for j=1:na
+ − toff = start - bs(j).t0.utc_epoch_milli/1000;
+ − N = length(bs(j).data.getX);
+ − t = linspace(toff, toff+(N-1)/fs, N);
+ − interp(bs(j), plist('vertices', t));
+ − end
+ −
+ − % Now ensure that we have the same data length
+ − ns = realmax;
+ − for jj=1:na
+ − if len(bs(jj)) < ns
+ − ns = len(bs(jj));
+ − end
+ − end
+ −
+ − bs = select(bs, 1:ns);
+ −
+ − nsecs = [];
+ − for j=1:na
+ − if isempty(nsecs)
+ − nsecs = bs(j).data.nsecs;
+ − end
+ − if nsecs ~= bs(j).data.nsecs
+ − error('### Something went wrong with the truncation. Vectors don''t span the same time period.');
+ − end
+ − end
+ −
+ − %----------------- Set history on output AOs
+ −
+ − for j=1:na
+ − bs(j).name = sprintf('%s(%s)', mfilename, ao_invars{j});
+ − bs(j).addHistory(getInfo('None'), pl, ao_invars(j), inhists(j));
+ − end
+ −
+ − % Set output
+ − if nargout == numel(bs)
+ − % List of outputs
+ − for ii = 1:numel(bs)
+ − varargout{ii} = bs(ii);
+ − end
+ − else
+ − % Single output
+ − varargout{1} = bs;
+ − end
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − else
+ − sets = {'Default'};
+ − pl = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: consolidate.m,v 1.32 2011/04/08 08:56:13 hewitson Exp $', sets, pl);
+ − ii.setModifier(false);
+ − ii.setArgsmin(2);
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ −
+ − function plout = getDefaultPlist()
+ − persistent pl;
+ − if exist('pl', 'var')==0 || isempty(pl)
+ − pl = buildplist();
+ − end
+ − plout = pl;
+ − end
+ −
+ − function pl_default = buildplist()
+ − pl_default = combine(...
+ − plist({'fs','The target sampling frequency for consolidate'}, paramValue.EMPTY_DOUBLE),...
+ − plist({'interp_method', 'The method for the interpolation step'}, {2, {'nearest', 'linear', 'spline', 'cubic'}, paramValue.SINGLE}), ...
+ − plist({'fixfs_method', 'The method for the fixfs step'}, {1, {'Time', 'Samples'}, paramValue.SINGLE}), ...
+ − ao.getInfo('dropduplicates').plists,...
+ − ao.getInfo('interpmissing').plists,...
+ − ao.getInfo('fixfs').plists);
+ − end
+ −