view m-toolbox/classes/@ao/interpmissing.m @ 52:daf4eab1a51e
database-connection-manager tip
Fix. Default password should be [] not an empty string
author
Daniele Nicolodi <nicolodi@science.unitn.it>
date
Wed, 07 Dec 2011 17:29:47 +0100 (2011-12-07)
parents
f0afece42f48
children
line source
+ − % INTERPMISSING interpolate missing samples in a time-series.
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % INTERPMISSING interpolate missing samples in a time-series. Missing samples
+ − % are identified as being those where the time-span between one
+ − % sample and the next is larger than d/fs where d is a
+ − % tolerance value. Missing data is then placed in the gap in
+ − % steps of 1/fs. Obviously this is only really correct for
+ − % evenly sampled time-series.
+ − %
+ − % CALL: bs = interpmissing(as)
+ − %
+ − % INPUTS: as - array of analysis objects
+ − % pl - parameter list (see below)
+ − %
+ − % OUTPUTS: bs - array of analysis objects, one for each input
+ − %
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('ao', 'interpmissing')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: interpmissing.m,v 1.30 2011/04/08 08:56:16 hewitson Exp $
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − function varargout = interpmissing(varargin)
+ −
+ − % Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − import utils.const.*
+ − utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all AOs and plists
+ − [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
+ − [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names);
+ −
+ − % Decide on a deep copy or a modify
+ − bs = copy(as, nargout);
+ −
+ − % Combine plists
+ − pl = parse(pl, getDefaultPlist);
+ −
+ −
+ − % Get tolerance
+ − dtol = find(pl, 'd');
+ −
+ − % Get only tsdata AOs
+ − for j=1:numel(bs)
+ − if isa(bs(j).data, 'tsdata')
+ −
+ − % capture input history
+ − ih = bs(j).hist;
+ −
+ − % find missing samples
+ − t = [];
+ − d = diff(bs(j).data.getX);
+ − idxs = find(d>dtol/bs(j).data.fs);
+ − utils.helper.msg(msg.PROC1, 'found %d data gaps', numel(idxs));
+ −
+ − % create new time grid
+ − count = 0;
+ − fs = bs(j).data.fs;
+ − for k=1:numel(idxs)
+ − idx = idxs(k);
+ − if isempty(t)
+ − t = bs(j).data.getX(1:idxs(1));
+ − end
+ − % now add samples at 1/fs until we are within 1/fs of the next sample
+ − gap = bs(j).data.getX(idx+1) - bs(j).data.getX(idx) - 1/fs;
+ − tfill = [[1/fs:1/fs:gap] + bs(j).data.getX(idx)].';
+ − count = count + numel(tfill);
+ −
+ − if k==numel(idxs)
+ − t = [t; tfill; bs(j).data.getX(idx+1:end)];
+ − else
+ − t = [t; tfill; bs(j).data.getX(idx+1:idxs(k+1))];
+ − end
+ − end
+ − utils.helper.msg(msg.PROC1, 'filled with %d samples', count);
+ −
+ − % now interpolate onto this new time-grid
+ − if ~isempty(t)
+ − bs(j).interp(plist('vertices', t, 'method', find(pl, 'method')));
+ − bs(j).name = sprintf('interpmissing(%s)', ao_invars{j});
+ − % Add history
+ − bs(j).addHistory(getInfo('None'), pl, ao_invars(j), ih);
+ − % clear errors
+ − bs(j).clearErrors;
+ − else
+ − utils.helper.msg(msg.PROC1, 'no missing samples found in %s - no action performed.', ao_invars{j});
+ − end
+ − else
+ − utils.helper.msg(msg.PROC1, 'skipping AO %s - it''s not a time-series AO.', ao_invars{j});
+ − end
+ − end
+ −
+ − % Set output
+ − if nargout == numel(bs)
+ − % List of outputs
+ − for ii = 1:numel(bs)
+ − varargout{ii} = bs(ii);
+ − end
+ − else
+ − % Single output
+ − varargout{1} = bs;
+ − end
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − else
+ − sets = {'Default'};
+ − pl = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: interpmissing.m,v 1.30 2011/04/08 08:56:16 hewitson Exp $', sets, pl);
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function plout = getDefaultPlist()
+ − persistent pl;
+ − if exist('pl', 'var')==0 || isempty(pl)
+ − pl = buildplist();
+ − end
+ − plout = pl;
+ − end
+ −
+ − function pl = buildplist()
+ − pl = plist();
+ −
+ − % d
+ − p = param({'d','The time interval tolerance for finding missing samples.'}, {1, {1.5}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − % Interpolation method
+ − pli = ao.getInfo('interp').plists;
+ − p = pli.params(pli.getIndexForKey('method'));
+ − pl.append(p);
+ −
+ − end