Mercurial > hg > ltpda
view m-toolbox/test/LTPDA_training/topic5/TrainigSession_T5_Ex05.m @ 52:daf4eab1a51e database-connection-manager tip
Fix. Default password should be [] not an empty string
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 07 Dec 2011 17:29:47 +0100 (2011-12-07) |
parents | f0afece42f48 |
children |
line wrap: on
line source
% Training session Topic 5 exercise 05 % % Fitting time series with xfit % % ao/xfit uses a full non-linear least square algorithm to fit data. Here % the main features will be described to fit an up-chirp sine. % % 1) Load time series data % 2) Define the model to fit % 3) Inspect data in order to find an initial guess % 4) Fit data with ao/xfit starting from that guess % 5) Check results % 6) Fit again by changing the fitting algorithm (fminunc will be used) % 7) Check results % 8) Fit again by using a Monte Carlo search % 9) Check results % 10) Final fit with the full model (data bias included) % 11) Check results % 12) Comments % % Trento, 01-03-2010 % Giuseppe Congedo % % $Id: TrainigSession_T5_Ex05.m,v 1.3 2011/05/13 15:13:12 ingo Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% 1) load tsdata % load test noise AO from file data = ao(plist('filename', 'topic5/T5_Ex05_TestNoise.xml')); data.setName; % look at data iplot(data) % iplot(abs(fft(data))) % iplot(psd(data)) %% 2) set the model % try a linearly chirped sine wave with a bias mdl = smodel('a + P1.*sin(2.*pi.*(P2 + P3.*t).*t + P4)'); mdl.setParams({'a', 'P1', 'P2', 'P3', 'P4'}); mdl.setXvar('t'); mdl.subs('a',5); % set additional parameters - data bias %% 3) try to find an initial guess % plot the tentative model mdlTry = mdl.setValues([4 1e-4 1e-5 0]); mdlTry.setXvals(data.x); iplot(data,mdlTry.eval) %% 4) xfit from an initial guess % fit plist plfit = plist('Function', mdl, ... 'P0', [4 1e-4 1e-5 0], ... % set initial guess for the parameters 'LB', [2 1e-6 1e-6 0], ... % set lower bounds for parameters 'UB', [5 1e-2 1e-2 2*pi] ... % set upper bounds for parameters ); % do fit params = xfit(data, plfit) %% 5) check results bestMdl = eval(params); % plotting results iplot(data,bestMdl) iplot(data-bestMdl) iplot(psd(data-bestMdl)) % Comments. % Fit is not so bad, but let's now try to change the fitting algorithm. %% 6) xfit from an initial guess (change algorithm) % fit plist plfit = plist('Function', mdl, ... 'P0', [4 1e-4 1e-5 0], ... % set initial guess for the parameters 'LB', [2 1e-6 1e-6 0], ... % set lower bounds for parameters 'UB', [5 1e-2 1e-2 2*pi], ... % set upper bounds for parameters 'algorithm', 'fminunc'); % set fitting algorithm % do fit params = xfit(data, plfit) %% 7) check results bestMdl = eval(params); % plotting results iplot(data,bestMdl) iplot(data-bestMdl) iplot(psd(data-bestMdl)) % Comments. % Fit is not so bad: an improvement with respect to using fminsearch. % Let's now try to do a Monte Carlo search. %% 8) xfit from a Monte Carlo search (bounds are shrinked about the best-fit found above) % fit plist plfit = plist('Function', mdl, ... 'LB', [2.5 1e-5 1e-6 0], ... % set lower bounds for parameters 'UB', [3.5 1e-3 1e-4 2*pi], ... % set upper bounds for parameters 'algorithm', 'fminunc', ... % set fitting algorithm 'MonteCarlo', 'y', 'Npoints', 1e4); % set the number of points in the parameter space % do fit params = xfit(data, plfit) %% 9) check results bestMdl = eval(params); % plotting results iplot(data,bestMdl) iplot(data-bestMdl) iplot(psd(data-bestMdl)) % Comments. % Fit is not so bad: no further improvements with respect to the previous fit. % Let's now try to fit the full model by doing a Monte Carlo search. %% 10) xfit with full model % set the full model (including the data bias) mdl = smodel('a + P1.*sin(2.*pi.*(P2 + P3.*t).*t + P4)'); mdl.setParams({'a', 'P1', 'P2', 'P3', 'P4'}); mdl.setXvar('t'); % fit plist plfit = plist('Function', mdl, ... 'P0', [5 3.01 7.27e-5 1.00e-5 0.325], ... % set initial guess for the parameters 'LB', [4 2.5 1e-5 1e-6 0], ... % set lower bounds for parameters 'UB', [6 3.5 1e-3 1e-4 2*pi], ... % set upper bounds for parameters 'algorithm', 'fminunc' ... % set fitting algorithm ); % do fit params = xfit(data, plfit) %% 11) check results bestMdl = eval(params); % plotting results iplot(data,bestMdl) iplot(data-bestMdl) iplot(psd(data-bestMdl)) % Comments. % Fit is good, even for the full model (including bias). %% 12) Comments % Let's compare the fit results with the real parameters. % % Firstly, data were generated with the set of parameters: % a = 5 % P1 = 3 % P2 = 1e-4 % P3 = 1e-5 % P4 = 0.3 % % In the end, the fit results are % chi2 = 1.03 % dof = 995 % a = 4.965 +/- 0.033 % P1 = 3.018 +/- 0.047 % P2 = 6.6e-5 +/- 3.1e-5 % P3 = 1.0032e-5 +/- 3.1e-8 % P4 = 0.334 +/- 0.043 % Quite in well accordance with expected values! % % Are they biased? No, they are not. Indeed: % (p_fit - p_true)/dp = ... % 1.1 % 0.39 % 1.1 % 1.1 % 0.80 % Very good.