Mercurial > hg > ltpda
view testing/utp_1.1/utps/ao/utp_ao_cohere.m @ 52:daf4eab1a51e database-connection-manager tip
Fix. Default password should be [] not an empty string
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 07 Dec 2011 17:29:47 +0100 |
parents | 409a22968d5e |
children |
line wrap: on
line source
% UTP_AO_COHERE a set of UTPs for the ao/cohere method % % M Hewitson 06-08-08 % % $Id: utp_ao_cohere.m,v 1.44 2011/07/22 12:29:58 mauro Exp $ % % <MethodDescription> % % The cohere method of the ao class computes the coherence between two % time-series AOs. % % </MethodDescription> function results = utp_ao_cohere(varargin) % Check the inputs if nargin == 0 % Some keywords class = 'ao'; mthd = 'cohere'; results = []; disp('******************************************************'); disp(['**** Running UTPs for ' class '/' mthd]); disp('******************************************************'); % Test AOs [at1,at2,at3,at4,at5,at6] = eval(['get_test_objects_' class]); % Exception list for the UTPs: [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples(); % Get default window from the preferences prefs = getappdata(0, 'LTPDApreferences'); defaultWinType = char(prefs.getMiscPrefs.getDefaultWindow); % Run the tests results = [results utp_01]; % getInfo call results = [results utp_02]; % Vector input (only with two objects) results = [results utp_03]; % Matrix input (not possible) results = [results utp_04]; % List input (only with two objects) results = [results utp_05]; % Test with mixed input (not possible) results = [results utp_06]; % Test history is working results = [results utp_07]; % Test the modify call works results = [results utp_08]; % Test input data shape == output data shape results = [results utp_09]; % Test output of the data results = [results utp_10]; % Test the basic usage against MATLAB mscohere results = [results utp_11(mthd, [at1 at1], ple1)]; % Test plotinfo doesn't disappear results = [results utp_12]; % Test basic symmetry properties of cohere (C) results = [results utp_13]; % Test basic symmetry properties of cohere (MS) results = [results utp_14]; % Test basic symmetry properties of cohere (C) results = [results utp_15]; % Test basic symmetry properties of cohere (MS) results = [results utp_16]; % Test basic relationship (MS) <-> (C) results = [results utp_17]; % Test units handling: complex cohere results = [results utp_18]; % Test units handling: magnitude-squared cohere results = [results utp_19]; % Test data lengths results = [results utp_20]; % Test with single window results = [results utp_21]; % Test number of averages: requested/obtained results = [results utp_22]; % Test number of averages: correct number results = [results utp_23]; % Test number of averages: syntax results = [results utp_24]; % Test the basic usage against MATLAB mscohere results = [results utp_25]; % Test Kaiser win and olap: (C) results = [results utp_26]; % Test Kaiser win and olap: (MS) results = [results utp_30]; % Special cases: same input disp('Done.'); disp('******************************************************'); elseif nargin == 1 % Check for UTP functions if strcmp(varargin{1}, 'isutp') results = 1; else results = 0; end else error('### Incorrect inputs') end %% UTP_01 % <TestDescription> % % Tests that the getInfo call works for this method. % % </TestDescription> function result = utp_01 % <SyntaxDescription> % % Test that the getInfo call works for no sets, all sets, and each set % individually. % % </SyntaxDescription> try % <SyntaxCode> % Call for no sets io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']); % Call for all sets io(2) = eval([class '.getInfo(''' mthd ''')']); % Call for each set for kk=1:numel(io(2).sets) io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']); end % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that getInfo call returned an minfo object in all cases. % 2) Check that all plists have the correct parameters. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % check we have minfo objects if isa(io, 'minfo') % SET 'None' if ~isempty(io(1).sets), atest = false; end if ~isempty(io(1).plists), atest = false; end % Check all Sets if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end % SET 'Default' if io(3).plists.nparams ~= 9, atest = false; end % Check key if ~io(3).plists.isparam('nfft'), atest = false; end if ~io(3).plists.isparam('win'), atest = false; end if ~io(3).plists.isparam('olap'), atest = false; end if ~io(3).plists.isparam('type'), atest = false; end if ~io(3).plists.isparam('order'), atest = false; end if ~io(3).plists.isparam('navs'), atest = false; end if ~io(3).plists.isparam('times'), atest = false; end if ~io(3).plists.isparam('split'), atest = false; end if ~io(3).plists.isparam('psll'), atest = false; end % Check default value if ~isequal(io(3).plists.find('nfft'), -1), atest = false; end if ~strcmpi(io(3).plists.find('win'), defaultWinType), atest = false; end if ~isequal(io(3).plists.find('olap'), -1), atest = false; end if ~isequal(io(3).plists.find('type'), 'C'), atest = false; end if ~isequal(io(3).plists.find('order'), 0), atest = false; end if ~isequal(io(3).plists.find('navs'), -1), atest = false; end if ~isEmptyDouble(io(3).plists.find('times')), atest = false; end if ~isEmptyDouble(io(3).plists.find('split')), atest = false; end if ~isequal(io(3).plists.find('psll'), 200), atest = false; end % Check options if ~isequal(io(3).plists.getOptionsForParam('nfft'), {-1}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('win'), specwin.getTypes), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('olap'), {-1}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('type'), {'C', 'MS'}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('order'), {-1 0 1 2 3 4 5 6 7 8 9}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('navs'), {-1}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('times'), {[]}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('split'), {[]}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('psll'), {200}), atest = false; end end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_01 %% UTP_02 % <TestDescription> % % Tests that the cohere method works with a vector of AOs as input. (only % with two objects in the vector) % % </TestDescription> function result = utp_02 % <SyntaxDescription> % % Test that the cohere method works for a vector of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> avec = [at1 at5]; out = cohere(avec); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the number of elements in 'out' is equal to 1. % 2) Check that each output AO contains the correct data. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have the correct number of outputs if numel(out) ~= 1, atest = false; end TOL = 1e-13; % Get shortest vector lmin = min([length(at1.y), length(at5.y), length(at6.y)]); % Set Nfft Nfft = lmin; % Get default window if strcmpi(defaultWinType, 'kaiser') win = specwin(defaultWinType, Nfft, find(ao.getInfo('cohere').plists, 'psll')); else win = specwin(defaultWinType, Nfft); end % Compute magnitude squared coherence estimate with MATLAB % out: at1->at5 [cxy, f] = mscohere(at1.y(1:lmin), at5.y(1:lmin), win.win, Nfft/2, Nfft, at1.fs); if any(abs(out.y-cxy > TOL)), atest = false; end if any(abs(out.x-f > TOL)), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_02 %% UTP_03 % <TestDescription> % % Test that the cohere method doesn't work for a matrix of AOs as input. % % </TestDescription> function result = utp_03 % <SyntaxDescription> % % Test that the cohere method doesn't work for a matrix of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> amat = [at1 at2;at5 at6]; out = cohere(amat); % </SyntaxCode> stest = false; catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_03 %% UTP_04 % <TestDescription> % % Tests that the cohere method works with a list of AOs as input. % % </TestDescription> function result = utp_04 % <SyntaxDescription> % % Test that the cohere method works for a list of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> out = cohere(at1,at5); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the number of elements in 'out' is equal to 1. % 2) Check that each output AO contains the correct data. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have the correct number of outputs if numel(out) ~= 1, atest = false; end TOL = 1e-13; % Get shortest vector lmin = min([length(at1.y), length(at5.y)]); % Set Nfft Nfft = lmin; % Get default window if strcmpi(defaultWinType, 'kaiser') win = specwin(defaultWinType, Nfft, find(ao.getInfo('cohere').plists, 'psll')); else win = specwin(defaultWinType, Nfft); end % Compute magnitude squared coherence estimate with MATLAB % out: at1->at5 [cxy, f] = mscohere(at1.y(1:lmin), at5.y(1:lmin), win.win, Nfft/2, Nfft, at1.fs); if any(abs(out.y-cxy > TOL)), atest = false; end if any(abs(out.x-f > TOL)), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_04 %% UTP_05 % <TestDescription> % % Test that the cohere method doesn't work with an input of matrices % and vectors and single AOs. % % </TestDescription> function result = utp_05 % <SyntaxDescription> % % Test that the cohere method doesn't work with an input of matrices % and vectors and single AOs. % % </SyntaxDescription> try % <SyntaxCode> out = cohere([at5 at6], [at5 at1; at6 at1], at6); stest = false; % </SyntaxCode> catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_05 %% UTP_06 % <TestDescription> % % Tests that the cohere method properly applies history. % % </TestDescription> function result = utp_06 % <SyntaxDescription> % % Test that the result of applying the cohere method can be processed back % to an m-file. % % </SyntaxDescription> try % <SyntaxCode> out = cohere(at5,at6); mout = rebuild(out); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the last entry in the history of 'out' corresponds to % 'cohere'. % 2) Check that the re-built object is the same as 'out'. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check the last step in the history of 'out' if ~strcmp(out.hist.methodInfo.mname, 'cohere'), atest = false; end % Check the re-built object if ~eq(mout, out, ple2), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_06 %% UTP_07 % <TestDescription> % % Tests that the cohere method can not modify the input AO. % % </TestDescription> function result = utp_07 % <SyntaxDescription> % % Test that the cohere method can not modify the input AO. % The method must throw an error for the modifier call. % % </SyntaxDescription> try % <SyntaxCode> % copy at1 to work with ain = ao(at1); % modify ain ain.cohere(at5); % </SyntaxCode> stest = false; catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_07 %% UTP_08 % <TestDescription> % % Test the shape of the output. % % </TestDescription> function result = utp_08 % <SyntaxDescription> % % Test that the cohere method keeps the data shape of the input object. The % input AO must be an AO with row data and an AO with column data. % % </SyntaxDescription> try % <SyntaxCode> out1 = cohere(at5, at6); out2 = cohere(at6, at5); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the shpe of the output data doesn't change. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check the shape of the output data if size(out1.data.y, 2) ~= 1, atest = false; end if size(out2.data.y, 1) ~= 1, atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_08 %% UTP_09 % <TestDescription> % % Check that the cohere method pass back the output objects to a list of % output variables or to a single variable. % % </TestDescription> function result = utp_09 % <SyntaxDescription> % % This test is not longer necessary because the cohere method pass back % always only one object. % % </SyntaxDescription> try % <SyntaxCode> % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_09 %% UTP_10 % <TestDescription> % % Tests that the cohere method agrees with MATLAB's mscohere when % configured to use the same parameters. % % </TestDescription> function result = utp_10 % <SyntaxDescription> % % Test that applying cohere works on two AOs. % % </SyntaxDescription> try % <SyntaxCode> % Construct two test AOs nsecs = 10; fs = 1000; pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'randn(size(t))'); a1 = ao(pl); a2 = ao(pl); % Filter one time-series f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [50 250])); a1f = filter(a1, plist('filter', f2)); % make some cross-power a4 = a1f+a2; a4.setName; % Compute coherence Nfft = 2*fs; win = specwin('Hanning', Nfft); pl = plist('Nfft', Nfft, 'Win', win.type, 'order', -1, 'type', 'MS'); out = cohere(a4,a1,pl); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that output agrees with the output of MATLAB's mscohere. % 2) Check that the shape of the output data is equal to the input data % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Compute coherence using MATLAB's cohere [cxy, f] = mscohere(a4.y, a1.y, win.win, Nfft/2, Nfft, a1.fs); if ne(cxy(:), out.y), atest = false; end if ne(f, out.x), atest = false; end if ne(out, out, ple2), atest = false; end % Check the data shape if size(a4.y,1) == 1 if size(out.y,1) ~= 1, atest = false; end else if size(out.y,2) ~= 1, atest = false; end end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_10 %% UTP_12 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) complex coherence of the white noise series % 4) compare C(x,y) with conj(C(y,x)) % 5) compare C(x,x) and C(y,y) with 1 % % </TestDescription> function result = utp_12 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) complex coherence of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n1 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_n2 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n1 + a_const + a_wave; a_2 = a_n2 + a_wave; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the complex coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'C'; n_pts = nsecs*fs/10; C12 = cohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); C21 = cohere(a_2, a_1, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); C21_cc = conj(C21); C11 = cohere(a_1, a_1, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); C22 = cohere(a_2, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that C(x,y) equals conj(C(y,x)) % 2) Check that C(x,x) equals 1 % 2) Check that C(y,y) equals 1 % </AlgoDescription> % <AlgoCode> atest = true; if stest if ~eq(C12.data, C21_cc.data, 'dy') || ... ~isequal(C11.y, ones(size(C11.y))) || ... ~isequal(C22.y, ones(size(C22.y))) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_12 %% UTP_13 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) magnitude-squared coherence of the white noise series % 4) compare C(x,y) with C(y,x) % 5) compare C(x,x) and C(y,y) with 1 % % </TestDescription> function result = utp_13 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) magnitude-squared coherence of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n1 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_n2 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n1 + a_const + a_wave; a_2 = a_n2 + a_wave; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the magnitude-squared coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'MS'; n_pts = nsecs*fs/10; C12 = cohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); C21 = cohere(a_2, a_1, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); C11 = cohere(a_1, a_1, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); C22 = cohere(a_2, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that C(x,y) equals C(y,x) % 1) Check that C(x,x) equals 1 % 1) Check that C(y,y) equals 1 % </AlgoDescription> % <AlgoCode> atest = true; if stest if ~isequal(C12.data, C21.data) || ... ~isequal(C11.y, ones(size(C11.y))) ... || ~isequal(C22.y, ones(size(C22.y))) atest = false; end if atest == false fs nsecs sigma_distr mu_distr f A phi end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_13 %% UTP_14 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) complex coherence of the combination of white noise series % 4) compare C(x,y) with 1 % % </TestDescription> function result = utp_14 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) complex coherence of the combination of noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); % Sinusoidal signal a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n + a_wave; % Linear combination (totally correlated time series) a_2 = a_1 + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the complex coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'C'; n_pts = nsecs*fs/10; C = cohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that the complex coherence equals 1 % </AlgoDescription> % <AlgoCode> atest = true; TOL = 1e-12; if stest if any(abs((C.y - 1)) > TOL) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_14 %% UTP_15 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) magnitude-squared coherence of the combination of white noise series % 4) compare C(x,y) with 1 % % </TestDescription> function result = utp_15 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) magnitude-squared coherence of the combination of noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); % Sinusoidal signal a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n + a_wave; % Linear combination (totally correlated time series) a_2 = a_1 + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the complex coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'MS'; n_pts = nsecs*fs/10; C = cohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that the magnitude-squared coherence equals 1 % </AlgoDescription> % <AlgoCode> atest = true; if stest if ~eq(C.y, ones(size(C.y))) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_15 %% UTP_16 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) magnitude-squared coherence M of the combination of white noise series % 4) complex coherence C of the combination of white noise series % 5) compare abs(C)^2 with M % % </TestDescription> function result = utp_16 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) magnitude-squared coherence of the combination of noise % 6) complex coherence of the combination of noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); % Sinusoidal signal a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n + a_wave; % Linear combination (totally correlated time series) a_2 = a_1 + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the complex coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; n_pts = nsecs*fs/10; M = cohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', 'MS')); C = cohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', 'C')); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that the magnitude-squared coherence equals the square % modulus of the complex coherence % </AlgoDescription> % <AlgoCode> atest = true; TOL = 1e-15; if stest if any(abs(M.y - abs(C.y).^2) > TOL) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_16 %% UTP_17 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) complex coherence of the white noise series % 4) compares the units of the input and output % % </TestDescription> function result = utp_17 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) complex cohere of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; sigma_distr_2 = 6.04e-9; mu_distr_2 = 1.5e-10; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); a_const = ao(mu_distr_2); a_2 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the coherence of the time-series data win = specwin('BH92'); olap = win.rov; detrend = 0; scale_type = 'C'; n_pts = nsecs*fs/10; C = cohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that (complex coherence yunits) equals [1] % 2) Check that (complex coherence xunits) equals [Hz] % </AlgoDescription> % <AlgoCode> atest = true; if stest if ~eq(C.yunits, unit('')) || ~eq(C.xunits, unit('Hz')) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_17 %% UTP_18 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) magnitude-squared coherence of the white noise series % 4) compares the units of the input and output % % </TestDescription> function result = utp_18 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) magnitude-squared cohere of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; sigma_distr_2 = 6.04e-9; mu_distr_2 = 1.5e-10; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); a_const = ao(mu_distr_2); a_2 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the coherence of the time-series data win = specwin('BH92'); olap = win.rov; detrend = 0; scale_type = 'MS'; n_pts = nsecs*fs/10; C = cohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend,'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that (magnitude-squared coherence yunits) equals [1] % 2) Check that (magnitude-squared coherence xunits) equals [Hz] % </AlgoDescription> % <AlgoCode> atest = true; if stest if ~eq(C.yunits, unit('')) || ~eq(C.xunits, unit('Hz')) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_18 %% UTP_19 % <TestDescription> % % Tests that differently sized data sets are treated properly % % </TestDescription> function result = utp_19 % <SyntaxDescription> % % Test that applying cohere works on two AOs. % % </SyntaxDescription> try % <SyntaxCode> % Construct two test AOs nsecs = [10000:1:20000]; fs = 1; pl = plist('fs', fs, 'tsfcn', 'randn(size(t))'); a1 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); a2 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); len_1 = a1.len; len_2 = a2.len; % Filter one time-series f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [.050 .25])); a1f = filter(a1, plist('filter', f2)); % Compute cohere Nfft = -1; win = 'Hanning'; pl = plist('Nfft', Nfft, 'Win', win, 'order', -1); out = cohere(a2,a1f,pl); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that cohere used the length of the shortest ao. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Compare the nfft with the length of the input data if out.x(2) ~= 1/min(len_1,len_2) atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_19 %% UTP_20 % <TestDescription> % % Tests that applying a single window the coherence is 1 % % </TestDescription> function result = utp_20 % <SyntaxDescription> % % Test that applying cohere works on two AOs. % % </SyntaxDescription> try % <SyntaxCode> % Construct two test AOs nsecs = [10000:100:20000]; fs = 1; pl = plist('fs', fs, 'tsfcn', 'randn(size(t))'); a1 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); a2 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); % Filter one time-series f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [.050 .25])); a1f = filter(a1, plist('filter', f2)); % Compute cohere Nfft = -1; win = 'Hanning'; pl = plist('Nfft', Nfft, 'Win', win, 'order', -1); out_c = cohere(a2, a1f, pl.pset('type', 'C')); out_ms = cohere(a2, a1f, pl.pset('type', 'MS')); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the calculated cohere is 1 % % </AlgoDescription> atest = true; TOL = 1e-12; if stest % <AlgoCode> % Compare the calculated cohere with 1 if any(abs(abs(out_c.y) - 1) > TOL) atest = false; end if any(abs(abs(out_ms.y) - 1) > TOL) atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_20 %% UTP_21 % <TestDescription> % % Tests the possibility to set the number of averages rather than setting the Nfft: % 1) white noise produced from normal pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cohere of the noise, without detrending, random window, set number of % averages % 3) check the effective number of averages % % </TestDescription> function result = utp_21 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) cohere of the noise, without detrending, random window, set number of % averages % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;2;5;10]; nsecs_list = [2000:1000:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); trend_0 = utils.math.randelement(trend_0_list, 1); % White noise type = 'Normal'; a_n1 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_n2 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); % Constant signal a_c = ao(trend_0); % Total signals a1 = a_n1 + a_c; a2 = a_n2 + a_c; % Evaluate the complex coherence of the white noise time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; switch win_type case 'Kaiser' win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); otherwise win = specwin(win_type, 1); end olap = win.rov; detrend = 0; n_pts = -1; scale_type = 'C'; navs = utils.math.randelement([1:100],1); % Evaluates the coherence asking for the number of averages C = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... 'Nfft', n_pts, 'order', detrend, 'type', scale_type, 'navs', navs)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that calculated navs are identical to those requested % % </AlgoDescription> % <AlgoCode> atest = true; if stest % Compare the navs written in the output object with the requested one if ne(navs, C.data.navs) if ne(find(C.hist.plistUsed, 'navs'), C.data.navs) atest = false; end end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_21 %% UTP_22 % <TestDescription> % % Tests the possibility to set the number of averages rather than setting the Nfft: % 1) white noise produced from uniform pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cohere of the noise, without detrending, random window, random navs % 3) get the number of averages % 4) get the nfft used % 5) run cohere again, with the nfft used % 6) compare the calculated objects % % </TestDescription> function result = utp_22 % <SyntaxDescription> % % 1) white noise produced from uniform pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cohere of the noise, without detrending, random window, random navs % 3) get the number of averages % 4) get the nfft used % 5) run cohere again, with the nfft used % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;2;5;10]; nsecs_list = [20 100 1000:1000:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); trend_0 = utils.math.randelement(trend_0_list, 1); % White noise type = 'Uniform'; a_n1 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_n2 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); % Constant signal a_c = ao(trend_0); % Total signals a1 = a_n1 + a_c; a2 = a_n2 + a_c; % Evaluate the complex coherence of the white noise time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; switch win_type case 'Kaiser' win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); otherwise win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'MS'; navs = fix(utils.math.randelement(logspace(0,log10(max(0,a1.len/10)),50),1)); % Calculates the coherence asking for the number of averages C1 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... 'Nfft', -1, 'order', detrend, 'type', scale_type, ... 'navs', navs)); % Calculates the coherence asking for the number of points just evaluated C2 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... 'Nfft', find(C1.hist.plistUsed, 'Nfft'), 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that calculated objects C1 and C2 are identical % % </AlgoDescription> % <AlgoCode> atest = true; if stest % Compare the output objects if ne(C1,C2,ple3) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_22 %% UTP_23 % <TestDescription> % % Tests the possibility to set the number of averages rather than setting the Nfft: % 1) white noise produced from normal pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cohere of the noise, without detrending, random window, random navs % 3) get the number of averages % 4) get the nfft used % 5) run cohere again, with the nfft used % 6) compare navs, nfft, coheres % % </TestDescription> function result = utp_23 % <SyntaxDescription> % % 1) white noise produced from normal pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cohere of the noise, without detrending, random window, random navs % 3) get the number of averages % 4) get the nfft used % 5) run cohere again, with the nfft used % 6) run cohere again, with conflicting parameters, and verify it uses % nfft rather than navs % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;2;5;10]; nsecs_list = [1000:1000:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); trend_0 = utils.math.randelement(trend_0_list, 1); % White noise type = 'Normal'; a_n1 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_n2 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); % Constant signal a_c = ao(trend_0); % Total signals a1 = a_n1 + a_c; a2 = a_n2 + a_c; % Evaluate the complex coherence of the white noise time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; switch win_type case 'Kaiser' win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); otherwise win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'C'; navs = fix(utils.math.randelement(logspace(0,log10(max(a1.len/10,0)),50),1)); % Calculates the coherence asking for the number of averages C1 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... 'Nfft', -1, 'order', detrend, 'type', scale_type, ... 'navs', navs)); npts_2 = find(C1.hist.plistUsed, 'Nfft'); % Calculates the coherence asking for the number of points C2 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... 'Nfft', npts_2, 'order', detrend, 'type', scale_type)); npts_3 = fix(npts_2/2); % Calculates the coherence asking for the number of points AND the window length C3 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... 'Nfft', npts_3, ... 'order', detrend, 'type', scale_type, ... 'navs', navs)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that calculated objects C1 and C2 are identical % 2) Check that C3 used different values % % </AlgoDescription> % <AlgoCode> atest = true; if stest % Compare the navs written in the output object with the requested one if ne(C1,C2,ple3) || ... ne(find(C3.hist.plistUsed, 'Nfft'), npts_3) || eq(C3.data.navs, navs) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_23 %% UTP_24 % <TestDescription> % % Tests that the cohere method agrees with MATLAB's mscohere when % configured to use the same parameters. % % </TestDescription> function result = utp_24 % <SyntaxDescription> % % Test that the applying cohere works on two AOs. % % </SyntaxDescription> try % <SyntaxCode> % Construct two test AOs nsecs = 10; fs = 1000; pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'randn(size(t))'); a1 = ao(pl); a2 = ao(pl); % Filter one time-series f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [50 250])); a1f = filter(a1, plist('filter', f2)); % make some cross-power a4 = a1f+a2; a4.setName; % Create the transpose of a4 to check the output data shape a4 = a4.'; % Compute coherence Nfft = 2*fs; % Use different windows size as Nfft win = specwin('Hanning', 1000); pl = plist('Nfft', Nfft, 'Win', win.type, 'order', 0, 'type', 'MS'); out = cohere(a4,a1,pl); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that output agrees with the output of MATLAB's mscohere. % 2) Check that the shape of the output data is equal to the input data % % </AlgoDescription> atest = true; if stest % <AlgoCode> TOL = 1e-12; % Redesign the window win = specwin('Hanning', Nfft); % Compute coherence using MATLAB's cohere [cxy, f] = mscohere(a4.y, a1.y, win.win, Nfft/2, Nfft, a1.fs); if any(abs(cxy(4:end)-out.y(4:end))>TOL), atest = false; end if ne(f, out.x), atest = false; end if ne(out, out, ple2), atest = false; end % Check the data shape if size(a4.y,1) == 1 if size(out.y,1) ~= 1, atest = false; end else if size(out.y,2) ~= 1, atest = false; end end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_24 %% UTP_25 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) complex coherence of the white noise series % 4) compares the units of the input and output % % </TestDescription> function result = utp_25 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) complex cohere of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; sigma_distr_2 = 6.04e-9; mu_distr_2 = 1.5e-10; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); a_const = ao(mu_distr_2); a_2 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the coherence of the time-series data win = 'Kaiser'; psll = utils.math.randelement([10:10:200], 1); detrend = 0; scale_type = 'C'; n_pts = nsecs*fs/10; C = cohere(a_1, a_2, ... plist('Win', win, 'psll', psll, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that (complex coherence yunits) equals [1] % 2) Check that (complex coherence xunits) equals [Hz] % </AlgoDescription> % <AlgoCode> atest = true; if stest if ~eq(C.yunits, unit('')) || ~eq(C.xunits, unit('Hz')) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_25 %% UTP_26 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) complex coherence of the white noise series % 4) compares the units of the input and output % % </TestDescription> function result = utp_26 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) complex cohere of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; sigma_distr_2 = 6.04e-9; mu_distr_2 = 1.5e-10; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); a_const = ao(mu_distr_2); a_2 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the coherence of the time-series data win = 'Kaiser'; psll = utils.math.randelement([10:10:200], 1); detrend = 0; scale_type = 'C'; n_pts = nsecs*fs/10; C = cohere(a_1, a_2, ... plist('Win', win, 'psll', psll, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that (complex coherence yunits) equals [1] % 2) Check that (complex coherence xunits) equals [Hz] % </AlgoDescription> % <AlgoCode> atest = true; if stest if ~eq(C.yunits, unit('')) || ~eq(C.xunits, unit('Hz')) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_26 %% UTP_30 % <TestDescription> % % Tests handling of special cases: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) the same noise series % 3) cohere of the white noise series % 4) compares the output to unity % % </TestDescription> function result = utp_30 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % the same data as 1) and 2) % 4) cohere of the series % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Build the second object as a copy of the first a_2 = a_1; % Evaluate the cohere of the time-series data win = specwin('BH92'); olap = win.rov; detrend = 0; n_pts = nsecs*fs/10; scale_type = 'C'; C = cohere(a_1, a_2, ... plist('Win', win, 'Nfft', n_pts, 'order', detrend, 'type', scale_type, 'olap', olap)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that calculated cohere equals 1 % </AlgoDescription> % <AlgoCode> atest = true; if stest if sum(ne(C.y, 1)) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_30 end