diff allan.py @ 0:3dcd4cfd8f82

Import
author Daniele Nicolodi <daniele.nicolodi@obspm.fr>
date Fri, 18 Apr 2014 18:44:54 +0200
parents
children ebc4e1d7c32f
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/allan.py	Fri Apr 18 18:44:54 2014 +0200
@@ -0,0 +1,148 @@
+import numpy as np
+from scipy import polyfit, polyval
+import matplotlib.pyplot as plt
+import numexpr
+
+__all__ = ['outliers', 'detrend', 'fastdetrend', 
+           'adev', 'xadev', 'xmdev', 'xtdev', 'xavar', 'xmvar', ]
+
+
+def outliers(y, alpha=6, remove=False):
+    """Detect and optionally remove outliers"""
+    
+    m = np.mean(y)
+    v = np.var(y)
+
+    outliers = np.abs(y - m) > (alpha * np.sqrt(v))
+
+    if remove:
+        x = lambda z: z.nonzero()[0]
+        y[outliers] = np.interp(x(outliers), x(~outliers), y[~outliers])
+
+    return np.nonzero(outliers)[0]
+
+
+def detrend(y, order=1):
+    """Detrend"""
+
+    x = np.arange(y.size)
+    p = polyfit(x, y, order)
+    y = y - polyval(p, x)
+    return y
+
+
+def fastdetrend(y, order=1, downsample=1000):
+    # time base
+    x = np.arange(y.size)
+    # compute detrend polynomial from downsampled data
+    p = polyfit(x[::downsample], y[::downsample], order)
+    
+    # construct numexpr expression
+    expr = []
+    args = {'y': y, 'x': x}
+    for i in range(order + 1):
+        expr.append("p%d" % i + "*x" * i)
+        args["p%d" % i] = p[order - i]
+    expr = "y - (%s)" % " + ".join(expr)
+
+    # evaluate expression
+    y = numexpr.evaluate(expr, local_dict=args)
+    return y
+
+
+def adev(x, tau, sampl=1.0):
+    """Allan deviation"""
+
+    x = np.asarray(x)
+    tau = np.asarray(tau)
+
+    # allocate output vectors
+    adev = np.zeros(tau.size)
+    dadev = np.zeros(tau.size)
+
+    # samples
+    n = x.size
+    # partitioning
+    p = np.floor(tau * sampl).astype(int)
+
+    for i, m in enumerate(p):
+        d = x[0:n - n % m].reshape(-1, m)
+        y = np.mean(d, axis=1)
+        adev[i] = np.sqrt(0.5 * np.mean(np.diff(y)**2))
+        dadev[i] = adev[i] / np.sqrt(y.size)
+
+    return adev, dadev
+    
+
+from _allan import _xmvar, _xmvar2, _xavar
+
+# Functions to compute Allan deviation and modified Allan deviation
+# from time error data.  For an oscillator described by the equation
+# v(t) = v0 * cos(2*pi * f0 * t + phi(t)) where f0 is the nominal
+# oscillator frequency the time deviation is computed as: x(t) =
+# phi(t) / (2*pi * f0)
+#
+# The Symmetricom 5115A phase analyzer outputs data in units of cycles
+# of the input signal.  To obtain time deviation from the data stream
+# d(t) it is sufficient to compute: x(t) = d(t) / f0 where f0 is the
+# nominal frequency of the oscillator under test
+
+def xmvar0(x, tau, tau0=1.0):
+    
+    x = np.asarray(x)
+    tau = np.asarray(tau)
+
+    # allocate output vectors
+    mvar = np.zeros(tau.size)
+
+    # partitioning
+    p = (tau // tau0).astype(int)
+
+    for k, m in enumerate(p):
+        mvar[k] = _xmvar(x, m)
+        # c = 0
+        # for j in xrange(x.size - 3 * m + 1):
+        #     v = 0
+        #     for i in xrange(j, j + m):
+        #         v += (x[i + 2 * m] - 2 * x[i + m] + x[i]) / m
+        #     c += v*v
+        # mavar[k] = c / (2.0 * m*m * (n - 3 * m + 1))
+
+    return np.sqrt(mvar) / tau0
+
+
+def xmvar(x, tau, tau0=1.0):
+    
+    x = np.asarray(x)
+    tau = np.asarray(tau)
+
+    # partitioning
+    p = (tau // tau0).astype(int)
+
+    return _xmvar2(x, p) / (tau0 * tau0)
+
+
+def xmdev(x, tau, tau0=1.0):
+    
+    return np.sqrt(xmvar(x, tau, tau0))
+
+
+def xtdev(x, tau, tau0=1.0):
+    
+    return np.sqrt(xmvar(x, tau, tau0)) * tau / np.sqrt(3.0)
+
+
+def xavar(x, tau, tau0=1.0):
+    
+    x = np.asarray(x)
+    tau = np.asarray(tau)
+
+    # partitioning
+    p = (tau // tau0).astype(int)
+
+    return _xavar(x, p) / (tau0 * tau0)
+
+
+def xadev(x, tau, tau0=1.0):
+    
+    return np.sqrt(xavar(x, tau, tau0))