Mercurial > hg > ltpda
comparison testing/utp_1.1/utps/ao/utp_ao_cpsd.m @ 44:409a22968d5e default
Add unit tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 18:42:11 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
43:bc767aaa99a8 | 44:409a22968d5e |
---|---|
1 % UTP_AO_CPSD a set of UTPs for the ao/cpsd method | |
2 % | |
3 % M Hewitson 06-08-08 | |
4 % | |
5 % $Id: utp_ao_cpsd.m,v 1.43 2011/07/22 11:51:46 mauro Exp $ | |
6 % | |
7 | |
8 % <MethodDescription> | |
9 % | |
10 % The cpsd method of the ao class computes the cross-spectral density between two | |
11 % time-series AOs. | |
12 % | |
13 % </MethodDescription> | |
14 | |
15 function results = utp_ao_cpsd(varargin) | |
16 | |
17 % Check the inputs | |
18 if nargin == 0 | |
19 | |
20 % Some keywords | |
21 class = 'ao'; | |
22 mthd = 'cpsd'; | |
23 | |
24 results = []; | |
25 disp('******************************************************'); | |
26 disp(['**** Running UTPs for ' class '/' mthd]); | |
27 disp('******************************************************'); | |
28 | |
29 % Test AOs | |
30 [at1,at2,at3,at4,at5,at6] = eval(['get_test_objects_' class]); | |
31 | |
32 % Exception list for the UTPs: | |
33 [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples(); | |
34 | |
35 % Get default window from the preferences | |
36 prefs = getappdata(0, 'LTPDApreferences'); | |
37 defaultWinType = char(prefs.getMiscPrefs.getDefaultWindow); | |
38 | |
39 % Run the tests | |
40 results = [results utp_01]; % getInfo call | |
41 results = [results utp_02]; % Vector input (only with two objects) | |
42 results = [results utp_03]; % Matrix input (not possible) | |
43 results = [results utp_04]; % List input (only with two objects) | |
44 results = [results utp_05]; % Test with mixed input (not possible) | |
45 results = [results utp_06]; % Test history is working | |
46 results = [results utp_07]; % Test the modify call works | |
47 results = [results utp_08]; % Test input data shape == output data shape | |
48 results = [results utp_09]; % Test output of the data | |
49 results = [results utp_10]; % Test against MATLAB's cpsd() | |
50 | |
51 results = [results utp_11(mthd, [at1 at1], ple1)]; % Test plotinfo doesn't disappear | |
52 | |
53 results = [results utp_17]; % Test units handling: CPSD | |
54 results = [results utp_18]; % Comparison with PSD | |
55 results = [results utp_24]; % Test data lengths | |
56 results = [results utp_25]; % Test Kaiser win and olap: CPSD | |
57 results = [results utp_51]; % Test number of averages: requested/obtained | |
58 results = [results utp_52]; % Test number of averages: correct number | |
59 results = [results utp_53]; % Test number of averages: syntax | |
60 | |
61 disp('Done.'); | |
62 disp('******************************************************'); | |
63 | |
64 elseif nargin == 1 % Check for UTP functions | |
65 if strcmp(varargin{1}, 'isutp') | |
66 results = 1; | |
67 else | |
68 results = 0; | |
69 end | |
70 else | |
71 error('### Incorrect inputs') | |
72 end | |
73 | |
74 %% UTP_01 | |
75 | |
76 % <TestDescription> | |
77 % | |
78 % Tests that the getInfo call works for this method. | |
79 % | |
80 % </TestDescription> | |
81 function result = utp_01 | |
82 | |
83 | |
84 % <SyntaxDescription> | |
85 % | |
86 % Test that the getInfo call works for no sets, all sets, and each set | |
87 % individually. | |
88 % | |
89 % </SyntaxDescription> | |
90 | |
91 try | |
92 % <SyntaxCode> | |
93 % Call for no sets | |
94 io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']); | |
95 % Call for all sets | |
96 io(2) = eval([class '.getInfo(''' mthd ''')']); | |
97 % Call for each set | |
98 for kk=1:numel(io(2).sets) | |
99 io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']); | |
100 end | |
101 % </SyntaxCode> | |
102 stest = true; | |
103 catch err | |
104 disp(err.message) | |
105 stest = false; | |
106 end | |
107 | |
108 % <AlgoDescription> | |
109 % | |
110 % 1) Check that getInfo call returned an minfo object in all cases. | |
111 % 2) Check that all plists have the correct parameters. | |
112 % | |
113 % </AlgoDescription> | |
114 | |
115 atest = true; | |
116 if stest | |
117 % <AlgoCode> | |
118 % check we have minfo objects | |
119 if isa(io, 'minfo') | |
120 | |
121 % SET 'None' | |
122 if ~isempty(io(1).sets), atest = false; end | |
123 if ~isempty(io(1).plists), atest = false; end | |
124 % Check all Sets | |
125 if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end | |
126 if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end | |
127 % SET 'Default' | |
128 if io(3).plists.nparams ~= 8, atest = false; end | |
129 % Check key | |
130 if ~io(3).plists.isparam('nfft'), atest = false; end | |
131 if ~io(3).plists.isparam('win'), atest = false; end | |
132 if ~io(3).plists.isparam('olap'), atest = false; end | |
133 if ~io(3).plists.isparam('order'), atest = false; end | |
134 if ~io(3).plists.isparam('navs'), atest = false; end | |
135 if ~io(3).plists.isparam('times'), atest = false; end | |
136 if ~io(3).plists.isparam('split'), atest = false; end | |
137 if ~io(3).plists.isparam('psll'), atest = false; end | |
138 % Check default value | |
139 if ~isequal(io(3).plists.find('nfft'), -1), atest = false; end | |
140 if ~strcmpi(io(3).plists.find('win'), defaultWinType), atest = false; end | |
141 if ~isequal(io(3).plists.find('olap'), -1), atest = false; end | |
142 if ~isequal(io(3).plists.find('order'), 0), atest = false; end | |
143 if ~isequal(io(3).plists.find('navs'), -1), atest = false; end | |
144 if ~isEmptyDouble(io(3).plists.find('times')), atest = false; end | |
145 if ~isEmptyDouble(io(3).plists.find('split')), atest = false; end | |
146 if ~isequal(io(3).plists.find('psll'), 200), atest = false; end | |
147 % Check options | |
148 if ~isequal(io(3).plists.getOptionsForParam('nfft'), {-1}), atest = false; disp('1'); end | |
149 if ~isequal(io(3).plists.getOptionsForParam('win'), specwin.getTypes), atest = false;disp('2'); end | |
150 if ~isequal(io(3).plists.getOptionsForParam('olap'), {-1}), atest = false; disp('3');end | |
151 if ~isequal(io(3).plists.getOptionsForParam('order'), {-1 0 1 2 3 4 5 6 7 8 9}), atest = false;disp('4'); end | |
152 if ~isequal(io(3).plists.getOptionsForParam('navs'), {-1}), atest = false;disp('5'); end | |
153 if ~isequal(io(3).plists.getOptionsForParam('times'), {[]}), atest = false;disp('6'); end | |
154 if ~isequal(io(3).plists.getOptionsForParam('split'), {[]}), atest = false;disp('6'); end | |
155 if ~isequal(io(3).plists.getOptionsForParam('psll'), {200}), atest = false;disp('7'); end | |
156 end | |
157 % </AlgoCode> | |
158 else | |
159 atest = false; | |
160 end | |
161 | |
162 % Return a result structure | |
163 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
164 end % END UTP_01 | |
165 | |
166 %% UTP_02 | |
167 | |
168 % <TestDescription> | |
169 % | |
170 % Tests that the cpsd method works with a vector of AOs as input. (only | |
171 % with two objects in the vector) | |
172 % | |
173 % </TestDescription> | |
174 function result = utp_02 | |
175 | |
176 % <SyntaxDescription> | |
177 % | |
178 % Test that the cpsd method works for a vector of AOs as input. | |
179 % | |
180 % </SyntaxDescription> | |
181 | |
182 try | |
183 % <SyntaxCode> | |
184 avec = [at1 at5]; | |
185 out = cpsd(avec); | |
186 % </SyntaxCode> | |
187 stest = true; | |
188 catch err | |
189 disp(err.message) | |
190 stest = false; | |
191 end | |
192 | |
193 % <AlgoDescription> | |
194 % | |
195 % 1) Check that the number of elements in 'out' is equal to 1 | |
196 % | |
197 % </AlgoDescription> | |
198 | |
199 atest = true; | |
200 if stest | |
201 % <AlgoCode> | |
202 % Check we have the correct number of outputs | |
203 if numel(out) ~= 1, atest = false; end | |
204 % </AlgoCode> | |
205 else | |
206 atest = false; | |
207 end | |
208 | |
209 % Return a result structure | |
210 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
211 end % END UTP_02 | |
212 | |
213 %% UTP_03 | |
214 | |
215 % <TestDescription> | |
216 % | |
217 % Tests that the cpsd method doesn't work with a matrix of AOs as input. | |
218 % | |
219 % </TestDescription> | |
220 function result = utp_03 | |
221 | |
222 % <SyntaxDescription> | |
223 % | |
224 % Test that the cpsd method doesn't work for a matrix of AOs as input. | |
225 % | |
226 % </SyntaxDescription> | |
227 | |
228 try | |
229 % <SyntaxCode> | |
230 amat = [at1 at5 at6; at5 at6 at1]; | |
231 out = cpsd(amat); | |
232 % </SyntaxCode> | |
233 stest = false; | |
234 catch err | |
235 stest = true; | |
236 end | |
237 | |
238 % <AlgoDescription> | |
239 % | |
240 % 1) Nothing to check. | |
241 % | |
242 % </AlgoDescription> | |
243 | |
244 atest = true; | |
245 if stest | |
246 % <AlgoCode> | |
247 % </AlgoCode> | |
248 else | |
249 atest = false; | |
250 end | |
251 | |
252 % Return a result structure | |
253 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
254 end % END UTP_03 | |
255 | |
256 %% UTP_04 | |
257 | |
258 % <TestDescription> | |
259 % | |
260 % Tests that the cpsd method works with a list of AOs as input. | |
261 % | |
262 % </TestDescription> | |
263 function result = utp_04 | |
264 | |
265 % <SyntaxDescription> | |
266 % | |
267 % Test that the cpsd method works for a list of AOs as input. | |
268 % | |
269 % </SyntaxDescription> | |
270 | |
271 try | |
272 % <SyntaxCode> | |
273 out = cpsd(at1,at5); | |
274 % </SyntaxCode> | |
275 stest = true; | |
276 catch err | |
277 disp(err.message) | |
278 stest = false; | |
279 end | |
280 | |
281 % <AlgoDescription> | |
282 % | |
283 % 1) Check that the number of elements in 'out' is equal to 1 | |
284 % | |
285 % </AlgoDescription> | |
286 | |
287 atest = true; | |
288 if stest | |
289 % <AlgoCode> | |
290 % Check we have the correct number of outputs | |
291 if numel(out) ~= 1, atest = false; end | |
292 % </AlgoCode> | |
293 else | |
294 atest = false; | |
295 end | |
296 | |
297 % Return a result structure | |
298 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
299 end % END UTP_04 | |
300 | |
301 %% UTP_05 | |
302 | |
303 % <TestDescription> | |
304 % | |
305 % Tests that the cpsd method doesn't work with a mix of different shaped | |
306 % AOs as input. | |
307 % | |
308 % </TestDescription> | |
309 function result = utp_05 | |
310 | |
311 % <SyntaxDescription> | |
312 % | |
313 % Test that the cpsd method doesn't work with an input of matrices and | |
314 % vectors and single AOs. | |
315 % | |
316 % </SyntaxDescription> | |
317 | |
318 try | |
319 % <SyntaxCode> | |
320 out = cpsd([at5 at6],[at5 at1; at6 at1],at6); | |
321 stest = false; | |
322 % </SyntaxCode> | |
323 catch err | |
324 stest = true; | |
325 end | |
326 | |
327 % <AlgoDescription> | |
328 % | |
329 % 1) Nothing to check | |
330 % | |
331 % </AlgoDescription> | |
332 | |
333 atest = true; | |
334 if stest | |
335 % <AlgoCode> | |
336 % </AlgoCode> | |
337 else | |
338 atest = false; | |
339 end | |
340 | |
341 % Return a result structure | |
342 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
343 end % END UTP_05 | |
344 | |
345 %% UTP_06 | |
346 | |
347 % <TestDescription> | |
348 % | |
349 % Tests that the cpsd method properly applies history. | |
350 % | |
351 % </TestDescription> | |
352 function result = utp_06 | |
353 | |
354 % <SyntaxDescription> | |
355 % | |
356 % Test that the result of applying the cpsd method can be processed back | |
357 % to an m-file. | |
358 % | |
359 % </SyntaxDescription> | |
360 | |
361 try | |
362 % <SyntaxCode> | |
363 out = cpsd(at5,at6); | |
364 mout = rebuild(out); | |
365 % </SyntaxCode> | |
366 stest = true; | |
367 catch err | |
368 disp(err.message) | |
369 stest = false; | |
370 end | |
371 | |
372 % <AlgoDescription> | |
373 % | |
374 % 1) Check that the last entry in the history of 'out' corresponds to | |
375 % 'cpsd'. | |
376 % 2) Check that the re-built object is the same as 'out'. | |
377 % | |
378 % </AlgoDescription> | |
379 | |
380 atest = true; | |
381 if stest | |
382 % <AlgoCode> | |
383 % Check the last step in the history of 'out' | |
384 if ~strcmp(out.hist.methodInfo.mname, 'cpsd'), atest = false; end | |
385 % Check the re-built object | |
386 if ~eq(mout, out, ple2), atest = false; end | |
387 % </AlgoCode> | |
388 else | |
389 atest = false; | |
390 end | |
391 | |
392 % Return a result structure | |
393 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
394 end % END UTP_06 | |
395 | |
396 %% UTP_07 | |
397 | |
398 % <TestDescription> | |
399 % | |
400 % Tests that the cpsd method can not modify the input AO. | |
401 % | |
402 % </TestDescription> | |
403 function result = utp_07 | |
404 | |
405 % <SyntaxDescription> | |
406 % | |
407 % Test that the cpsd method can not modify the input AO. | |
408 % The method must throw an error for the modifier call. | |
409 % | |
410 % </SyntaxDescription> | |
411 | |
412 try | |
413 % <SyntaxCode> | |
414 % copy at1 to work with | |
415 ain = ao(at1); | |
416 % modify ain | |
417 ain.cpsd(at5); | |
418 % </SyntaxCode> | |
419 stest = false; | |
420 catch err | |
421 stest = true; | |
422 end | |
423 | |
424 % <AlgoDescription> | |
425 % | |
426 % 1) Nothing to check. | |
427 % | |
428 % </AlgoDescription> | |
429 | |
430 atest = true; | |
431 if stest | |
432 % <AlgoCode> | |
433 % </AlgoCode> | |
434 else | |
435 atest = false; | |
436 end | |
437 | |
438 % Return a result structure | |
439 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
440 end % END UTP_07 | |
441 | |
442 %% UTP_08 | |
443 | |
444 % <TestDescription> | |
445 % | |
446 % Test the shape of the output. | |
447 % | |
448 % </TestDescription> | |
449 function result = utp_08 | |
450 | |
451 % <SyntaxDescription> | |
452 % | |
453 % Test that the cpsd method keeps the data shape of the input object. The | |
454 % input AO must be an AO with row data and an AO with column data. | |
455 % | |
456 % </SyntaxDescription> | |
457 | |
458 try | |
459 % <SyntaxCode> | |
460 out1 = cpsd(at5, at6); | |
461 out2 = cpsd(at6, at5); | |
462 % </SyntaxCode> | |
463 stest = true; | |
464 catch err | |
465 disp(err.message) | |
466 stest = false; | |
467 end | |
468 | |
469 % <AlgoDescription> | |
470 % | |
471 % 1) Check that the shape of the output data doesn't change. | |
472 % | |
473 % </AlgoDescription> | |
474 | |
475 atest = true; | |
476 if stest | |
477 % <AlgoCode> | |
478 % Check the shape of the output data | |
479 if size(out1.data.y, 2) ~= 1, atest = false; end | |
480 if size(out2.data.y, 1) ~= 1, atest = false; end | |
481 % </AlgoCode> | |
482 else | |
483 atest = false; | |
484 end | |
485 | |
486 % Return a result structure | |
487 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
488 end % END UTP_08 | |
489 | |
490 %% UTP_09 | |
491 | |
492 % <TestDescription> | |
493 % | |
494 % Check that the cpsd method pass back the output objects to a list of | |
495 % output variables or to a single variable. | |
496 % | |
497 % </TestDescription> | |
498 function result = utp_09 | |
499 | |
500 % <SyntaxDescription> | |
501 % | |
502 % This test is not longer necessary because the cpsd method pass back | |
503 % always only one object. | |
504 % | |
505 % </SyntaxDescription> | |
506 | |
507 try | |
508 % <SyntaxCode> | |
509 % </SyntaxCode> | |
510 stest = true; | |
511 catch err | |
512 disp(err.message) | |
513 stest = false; | |
514 end | |
515 | |
516 % <AlgoDescription> | |
517 % | |
518 % 1) Nothing to check. | |
519 % | |
520 % </AlgoDescription> | |
521 | |
522 atest = true; | |
523 if stest | |
524 % <AlgoCode> | |
525 % </AlgoCode> | |
526 else | |
527 atest = false; | |
528 end | |
529 | |
530 % Return a result structure | |
531 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
532 end % END UTP_09 | |
533 | |
534 %% UTP_10 | |
535 | |
536 % <TestDescription> | |
537 % | |
538 % Tests that the cpsd method agrees with MATLAB's cpsd when | |
539 % configured to use the same parameters. | |
540 % | |
541 % </TestDescription> | |
542 function result = utp_10 | |
543 | |
544 % <SyntaxDescription> | |
545 % | |
546 % Test that applying cpsd works on two AOs. | |
547 % | |
548 % </SyntaxDescription> | |
549 | |
550 try | |
551 % <SyntaxCode> | |
552 % Construct two test AOs | |
553 nsecs = 10; | |
554 fs = 1000; | |
555 pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'randn(size(t))'); | |
556 a1 = ao(pl); a2 = ao(pl); | |
557 % Filter one time-series | |
558 f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [50 250])); | |
559 a1f = filter(a1, plist('filter', f2)); | |
560 % make some cross-power | |
561 a4 = a1f+a2; a4.setName; | |
562 % Compute cpsd | |
563 Nfft = 2*fs; | |
564 win = specwin('Hanning', Nfft); | |
565 pl = plist('Nfft', Nfft, 'Win', win.type, 'order', -1); | |
566 out = cpsd(a4,a1,pl); | |
567 % </SyntaxCode> | |
568 stest = true; | |
569 catch err | |
570 disp(err.message) | |
571 stest = false; | |
572 end | |
573 | |
574 % <AlgoDescription> | |
575 % | |
576 % 1) Check that output agrees with the output of MATLAB's cpsd. | |
577 % | |
578 % </AlgoDescription> | |
579 | |
580 atest = true; | |
581 if stest | |
582 % <AlgoCode> | |
583 % Compute cpsd using MATLAB's cpsd | |
584 [cxy, f] = cpsd(a4.data.y, a1.data.y, win.win, Nfft/2, Nfft, a1.data.fs); | |
585 if ~utils.math.isequal(cxy(:), out.data.y(:)) || ~utils.math.isequal(f, out.data.getX), atest = false; end | |
586 % </AlgoCode> | |
587 else | |
588 atest = false; | |
589 end | |
590 | |
591 % Return a result structure | |
592 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
593 end % END UTP_10 | |
594 | |
595 | |
596 %% UTP_17 | |
597 | |
598 % <TestDescription> | |
599 % | |
600 % Tests handling of units: | |
601 % 1) white noise produced from normal pdf, with a given mean value and | |
602 % sigma (distribution's 1st and 2nd orders) | |
603 % 2) white noise produced from normal pdf, with a given mean value and | |
604 % sigma (distribution's 1st and 2nd orders) | |
605 % 3) CPSD of the white noise series | |
606 % 4) compares the units of the input and output | |
607 % | |
608 | |
609 % </TestDescription> | |
610 function result = utp_17 | |
611 | |
612 % <SyntaxDescription> | |
613 % | |
614 % 1) Prepare the test tsdata: | |
615 % white noise from normal distribution + offset | |
616 % 2) Assign a random unit | |
617 % 3) Prepare the test tsdata: | |
618 % white noise from normal distribution + offset | |
619 % 4) Assign a random unit | |
620 % 5) CPSD of the white noise | |
621 % | |
622 % </SyntaxDescription> | |
623 | |
624 % <SyntaxCode> | |
625 try | |
626 | |
627 noise_type = 'Normal'; | |
628 win_type = 'BH92'; | |
629 | |
630 [a_1, a_2, spec, spec1] = prepare_analyze_noise(win_type, noise_type, plist); | |
631 | |
632 stest = true; | |
633 | |
634 catch err | |
635 disp(err.message) | |
636 stest = false; | |
637 end | |
638 % </SyntaxCode> | |
639 | |
640 % <AlgoDescription> | |
641 % | |
642 % 1) Check that (calculated CPSD yunits) equals | |
643 % input_1 units*input_2 units/Hz | |
644 % | |
645 % </AlgoDescription> | |
646 | |
647 % <AlgoCode> | |
648 atest = true; | |
649 u = simplifyYunits(a_1.* a_2, plist('prefixes', false, 'exceptions', 'Hz')); | |
650 if stest | |
651 if ne(spec.Cxy.yunits, u.yunits * unit('Hz^-1')) || ne(spec.Cxy.xunits, unit('Hz')) | |
652 atest = false; | |
653 end | |
654 if ne(spec.Cyx.yunits, u.yunits * unit('Hz^-1')) || ne(spec.Cyx.xunits, unit('Hz')) | |
655 atest = false; | |
656 end | |
657 else | |
658 atest = false; | |
659 end | |
660 % </AlgoCode> | |
661 | |
662 % Return a result structure | |
663 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
664 end % END UTP_17 | |
665 | |
666 %% UTP_18 | |
667 | |
668 % <TestDescription> | |
669 % | |
670 % Tests handling of units: | |
671 % 1) white noise produced from normal pdf, with a given mean value and | |
672 % sigma (distribution's 1st and 2nd orders) | |
673 % 2) white noise produced from normal pdf, with a given mean value and | |
674 % sigma (distribution's 1st and 2nd orders) | |
675 % 3) CPSD of the white noise series | |
676 % | |
677 % Comparison with PSD: | |
678 % 4) compares the off-diagonal terms to check they are complex-conjugated | |
679 % 5) compares the diagonal terms with PSD of the individual noise | |
680 % | |
681 | |
682 % </TestDescription> | |
683 function result = utp_18 | |
684 | |
685 % <SyntaxDescription> | |
686 % | |
687 % 1) Prepare the test tsdata: | |
688 % white noise from normal distribution + offset | |
689 % 2) Assign a random unit | |
690 % 3) Prepare the test tsdata: | |
691 % white noise from normal distribution + offset | |
692 % 4) Assign a random unit | |
693 % 5) CPSD of the white noise | |
694 % 6) PSD of the white noise | |
695 % | |
696 % </SyntaxDescription> | |
697 | |
698 % <SyntaxCode> | |
699 try | |
700 | |
701 noise_type = 'Uniform'; | |
702 win_type = 'BH92'; | |
703 | |
704 [a_1, a_2, spec, spec2] = prepare_analyze_noise(win_type, noise_type, plist); | |
705 | |
706 stest = true; | |
707 | |
708 catch err | |
709 disp(err.message) | |
710 stest = false; | |
711 end | |
712 % </SyntaxCode> | |
713 | |
714 % <AlgoDescription> | |
715 % | |
716 % 1) Check that CPSD(x,y) equals conj(CPSD(y,x)) | |
717 % 2) Check that CPSD(x,x) equals PSD(x) | |
718 % 3) Check that CPSD(y,y) equals PSD(y) | |
719 % | |
720 % </AlgoDescription> | |
721 | |
722 % <AlgoCode> | |
723 atest = true; | |
724 | |
725 if stest | |
726 if ne(spec.Cxy.y, conj(spec.Cyx.y)), atest = false; end | |
727 if ne(spec.Cxy.x, spec.Cyx.x), atest = false; end | |
728 if ne(spec.Cxx.data, spec.S_1.data), atest = false; end | |
729 if ne(spec.Cyy.data, spec.S_2.data), atest = false; end | |
730 else | |
731 atest = false; | |
732 end | |
733 % </AlgoCode> | |
734 | |
735 % Return a result structure | |
736 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
737 end % END UTP_18 | |
738 | |
739 | |
740 %% UTP_24 | |
741 | |
742 % <TestDescription> | |
743 % | |
744 % Tests that differently sized data sets are treated properly | |
745 % | |
746 % </TestDescription> | |
747 function result = utp_24 | |
748 | |
749 % <SyntaxDescription> | |
750 % | |
751 % Test that applying cpsd works on two AOs. | |
752 % | |
753 % </SyntaxDescription> | |
754 | |
755 try | |
756 % <SyntaxCode> | |
757 % Construct two test AOs | |
758 nsecs = [10000:1:20000]; | |
759 fs = 1; | |
760 pl = plist('fs', fs, 'tsfcn', 'randn(size(t))'); | |
761 a1 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); | |
762 a2 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); | |
763 len_1 = a1.len; | |
764 len_2 = a2.len; | |
765 % Filter one time-series | |
766 f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [.050 .25])); | |
767 a1f = filter(a1, plist('filter', f2)); | |
768 % Compute cpsd | |
769 Nfft = -1; | |
770 win = 'Hanning'; | |
771 pl = plist('Nfft', Nfft, 'Win', win, 'order', -1); | |
772 out = cpsd(a2,a1f,pl); | |
773 % </SyntaxCode> | |
774 stest = true; | |
775 catch err | |
776 disp(err.message) | |
777 stest = false; | |
778 end | |
779 | |
780 % <AlgoDescription> | |
781 % | |
782 % 1) Check that cpsd used the length of the shortest ao. | |
783 % | |
784 % </AlgoDescription> | |
785 | |
786 atest = true; | |
787 if stest | |
788 % <AlgoCode> | |
789 % Compare the nfft with the length of the input data | |
790 | |
791 if out.x(2) ~= 1/min(len_1,len_2) | |
792 atest = false; | |
793 end | |
794 % </AlgoCode> | |
795 else | |
796 atest = false; | |
797 end | |
798 | |
799 % Return a result structure | |
800 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
801 end % END UTP_24 | |
802 | |
803 %% UTP_25 | |
804 | |
805 % <TestDescription> | |
806 % | |
807 % Tests handling of units: | |
808 % 1) white noise produced from normal pdf, with a given mean value and | |
809 % sigma (distribution's 1st and 2nd orders) | |
810 % 2) white noise produced from normal pdf, with a given mean value and | |
811 % sigma (distribution's 1st and 2nd orders) | |
812 % 3) CPSD of the white noise series | |
813 % 4) compares the units of the input and output | |
814 % | |
815 | |
816 % </TestDescription> | |
817 function result = utp_25 | |
818 | |
819 % <SyntaxDescription> | |
820 % | |
821 % 1) Prepare the test tsdata: | |
822 % white noise from normal distribution + offset | |
823 % 2) Assign a random unit | |
824 % 3) Prepare the test tsdata: | |
825 % white noise from normal distribution + offset | |
826 % 4) Assign a random unit | |
827 % 5) CPSD of the white noise | |
828 % | |
829 % </SyntaxDescription> | |
830 | |
831 % <SyntaxCode> | |
832 try | |
833 | |
834 % Build time-series test data | |
835 fs = 1; | |
836 nsecs = 86400; | |
837 sigma_distr_1 = 4.69e-12; | |
838 mu_distr_1 = -5.11e-14; | |
839 sigma_distr_2 = 6.04e-9; | |
840 mu_distr_2 = 1.5e-10; | |
841 | |
842 % White noise | |
843 type = 'Normal'; | |
844 | |
845 a_n = ao(plist('waveform', 'noise', ... | |
846 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); | |
847 a_const = ao(mu_distr_1); | |
848 a_1 = a_n + a_const; | |
849 | |
850 a_n = ao(plist('waveform', 'noise', ... | |
851 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); | |
852 a_const = ao(mu_distr_2); | |
853 a_2 = a_n + a_const; | |
854 | |
855 % Set units and prefix from those supported | |
856 unit_list = unit.supportedUnits; | |
857 % remove the first empty unit '' from the list, because then is it | |
858 % possible that we add a prefix to an empty unit | |
859 unit_list = unit_list(2:end); | |
860 prefix_list = unit.supportedPrefixes; | |
861 a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); | |
862 a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); | |
863 | |
864 % Evaluate the cpsd of the time-series data, using Kaiser window | |
865 % Psll and olap are not set | |
866 win = ('Kaiser'); | |
867 detrend = 0; | |
868 n_pts = nsecs*fs/10; | |
869 | |
870 C = cpsd(a_1, a_2, plist('Win', win, 'Nfft', n_pts, 'order', detrend)); | |
871 | |
872 stest = true; | |
873 | |
874 catch err | |
875 disp(err.message) | |
876 stest = false; | |
877 end | |
878 % </SyntaxCode> | |
879 | |
880 % <AlgoDescription> | |
881 % | |
882 % 1) Check that (calculated CPSD yunits) equals | |
883 %input_1 units*input_2 units/Hz | |
884 | |
885 % </AlgoDescription> | |
886 | |
887 % <AlgoCode> | |
888 atest = true; | |
889 u = simplifyYunits(a_1.* a_2, plist('prefixes', false, 'exceptions', 'Hz')); | |
890 if stest | |
891 if ne(C.yunits, u.yunits * unit('Hz^-1')) || ne(C.xunits, unit('Hz')) | |
892 atest = false; | |
893 end | |
894 else | |
895 atest = false; | |
896 end | |
897 % </AlgoCode> | |
898 | |
899 % Return a result structure | |
900 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
901 end % END UTP_25 | |
902 | |
903 %% UTP_51 | |
904 | |
905 % <TestDescription> | |
906 % | |
907 % Tests the possibility to set the number of averages rather than setting the Nfft: | |
908 % 1) white noise produced from normal pdf, with: | |
909 % a given mean value and sigma (distribution's 1st and 2nd order) | |
910 % 2) cpsd of the noise, without detrending, random window, set number of | |
911 % averages | |
912 % 3) check the effective number of averages | |
913 % | |
914 | |
915 % </TestDescription> | |
916 function result = utp_51 | |
917 | |
918 % <SyntaxDescription> | |
919 % | |
920 % 1) Prepare the test tsdata: | |
921 % white noise from normal distribution + offset | |
922 % 2) cpsd of the noise, without detrending, random window, set number of | |
923 % averages | |
924 % | |
925 % </SyntaxDescription> | |
926 | |
927 % <SyntaxCode> | |
928 try | |
929 | |
930 noise_type = 'Normal'; | |
931 | |
932 % Evaluate the cpsd of the white noise time-series data | |
933 [a_1, a_2, C1, C2, navs] = prepare_analyze_noise_navs(noise_type, plist); | |
934 | |
935 stest = true; | |
936 | |
937 catch err | |
938 disp(err.message) | |
939 stest = false; | |
940 end | |
941 % </SyntaxCode> | |
942 | |
943 % <AlgoDescription> | |
944 % | |
945 % 1) Check that calculated navs are identical to those requested | |
946 % | |
947 % </AlgoDescription> | |
948 | |
949 % <AlgoCode> | |
950 atest = true; | |
951 | |
952 if stest | |
953 if ne(navs, C1.data.navs) | |
954 if ne(find(C1.hist.plistUsed, 'navs'), C1.data.navs) | |
955 atest = false; | |
956 end | |
957 end | |
958 else | |
959 atest = false; | |
960 end | |
961 % </AlgoCode> | |
962 | |
963 % Return a result structure | |
964 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
965 end % END UTP_51 | |
966 | |
967 %% UTP_52 | |
968 | |
969 % <TestDescription> | |
970 % | |
971 % Tests the possibility to set the number of averages rather than setting the Nfft: | |
972 % 1) white noise produced from uniform pdf, with: | |
973 % a given mean value and sigma (distribution's 1st and 2nd order) | |
974 % 2) cpsd of the noise, without detrending, random window, random navs | |
975 % 3) get the number of averages | |
976 % 4) get the nfft used | |
977 % 5) run cpsd again, with the nfft used | |
978 % 6) compare the calculated objects | |
979 % | |
980 | |
981 % </TestDescription> | |
982 function result = utp_52 | |
983 | |
984 % <SyntaxDescription> | |
985 % | |
986 % 1) white noise produced from uniform pdf, with: | |
987 % a given mean value and sigma (distribution's 1st and 2nd order) | |
988 % 2) cpsd of the noise, without detrending, random window, random navs | |
989 % 3) get the number of averages | |
990 % 4) get the nfft used | |
991 % 5) run cpsd again, with the nfft used | |
992 % | |
993 % </SyntaxDescription> | |
994 | |
995 % <SyntaxCode> | |
996 try | |
997 | |
998 noise_type = 'Uniform'; | |
999 | |
1000 % Evaluate the cpsd of the white noise time-series data | |
1001 [a_1, a_2, C1, C2, navs] = prepare_analyze_noise_navs(noise_type, plist); | |
1002 | |
1003 stest = true; | |
1004 | |
1005 catch err | |
1006 disp(err.message) | |
1007 stest = false; | |
1008 end | |
1009 % </SyntaxCode> | |
1010 | |
1011 % <AlgoDescription> | |
1012 % | |
1013 % 1) Check that calculated objects C1 and C2 are identical | |
1014 % | |
1015 % </AlgoDescription> | |
1016 | |
1017 % <AlgoCode> | |
1018 atest = true; | |
1019 | |
1020 if stest | |
1021 % Compare the output objects | |
1022 if ne(C1, C2, ple3) | |
1023 atest = false; | |
1024 end | |
1025 else | |
1026 atest = false; | |
1027 end | |
1028 % </AlgoCode> | |
1029 | |
1030 % Return a result structure | |
1031 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
1032 end % END UTP_52 | |
1033 | |
1034 %% UTP_53 | |
1035 | |
1036 % <TestDescription> | |
1037 % | |
1038 % Tests the possibility to set the number of averages rather than setting the Nfft: | |
1039 % 1) white noise produced from normal pdf, with: | |
1040 % a given mean value and sigma (distribution's 1st and 2nd order) | |
1041 % 2) cpsd of the noise, without detrending, random window, random navs | |
1042 % 3) get the number of averages | |
1043 % 4) get the nfft used | |
1044 % 5) run cpsd again, with the nfft used | |
1045 % 6) compare navs, nfft, psds | |
1046 % | |
1047 | |
1048 % </TestDescription> | |
1049 function result = utp_53 | |
1050 | |
1051 % <SyntaxDescription> | |
1052 % | |
1053 % 1) white noise produced from normal pdf, with: | |
1054 % a given mean value and sigma (distribution's 1st and 2nd order) | |
1055 % 2) cpsd of the noise, without detrending, random window, random navs | |
1056 % 3) get the number of averages | |
1057 % 4) get the nfft used | |
1058 % 5) run cpsd again, with the nfft used | |
1059 % 6) run cpsd again, with conflicting parameters, and verify it uses | |
1060 % nfft rather than navs | |
1061 % | |
1062 % </SyntaxDescription> | |
1063 | |
1064 % <SyntaxCode> | |
1065 try | |
1066 | |
1067 noise_type = 'Uniform'; | |
1068 | |
1069 % Evaluate the cpsd of the white noise time-series data | |
1070 [a_1, a_2, C1, C2, navs] = prepare_analyze_noise_navs(noise_type, plist); | |
1071 | |
1072 npts_3 = fix(find(C1.hist.plistUsed, 'Nfft')/2); | |
1073 | |
1074 % Calculates the cpsd asking for the number of points AND the window length | |
1075 pl_spec = C1.hist.plistUsed; | |
1076 pl_spec.pset('Nfft', npts_3, 'navs', navs); | |
1077 C3 = cpsd(a_1, a_2, pl_spec); | |
1078 | |
1079 stest = true; | |
1080 | |
1081 catch err | |
1082 disp(err.message) | |
1083 stest = false; | |
1084 end | |
1085 % </SyntaxCode> | |
1086 | |
1087 % <AlgoDescription> | |
1088 % | |
1089 % 1) Check that calculated objects C1 and C2 are identical | |
1090 % 2) Check that C3 used different values | |
1091 % | |
1092 % </AlgoDescription> | |
1093 | |
1094 % <AlgoCode> | |
1095 atest = true; | |
1096 | |
1097 if stest | |
1098 % Compare the navs written in the output object with the requested one | |
1099 if ne(C1,C2,ple3) || ... | |
1100 ne(find(C3.hist.plistUsed, 'Nfft'), npts_3) || eq(C3.data.navs, navs) | |
1101 atest = false; | |
1102 end | |
1103 else | |
1104 atest = false; | |
1105 end | |
1106 % </AlgoCode> | |
1107 | |
1108 % Return a result structure | |
1109 result = utp_prepare_result(atest, stest, dbstack, mfilename); | |
1110 end % END UTP_53 | |
1111 | |
1112 %% Helper function for window call construction | |
1113 | |
1114 function [a_1, a_2, spec1, spec2] = prepare_analyze_noise(win_type, noise_type, pli) | |
1115 % Array of parameters to pick from | |
1116 fs_list = [0.1;1;2;5;10]; | |
1117 nsecs_list = [20 100 1000:1000:10000]'; | |
1118 sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; | |
1119 trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; | |
1120 | |
1121 | |
1122 % Build time-series test data | |
1123 | |
1124 % Picks the values at random from the list | |
1125 fs = utils.math.randelement(fs_list, 1); | |
1126 nsecs = utils.math.randelement(nsecs_list, 1); | |
1127 sigma_distr_1 = utils.math.randelement(sigma_distr_list, 1); | |
1128 sigma_distr_2 = utils.math.randelement(sigma_distr_list, 1); | |
1129 trend_0_1 = utils.math.randelement(trend_0_list, 1); | |
1130 trend_0_2 = utils.math.randelement(trend_0_list, 1); | |
1131 | |
1132 % Pick units and prefix from those supported | |
1133 unit_list = unit.supportedUnits; | |
1134 % remove the first empty unit '' from the list, because then is it | |
1135 % possible that we add a prefix to an empty unit | |
1136 unit_list = unit_list(2:end); | |
1137 prefix_list = unit.supportedPrefixes; | |
1138 | |
1139 % White noise | |
1140 a_n = ao(plist('waveform', 'noise', ... | |
1141 'type', noise_type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); | |
1142 | |
1143 % Constant signal | |
1144 a_c = ao(trend_0_1); | |
1145 | |
1146 % Total signal | |
1147 a_1 = a_n + a_c; | |
1148 | |
1149 % White noise | |
1150 a_n = ao(plist('waveform', 'noise', ... | |
1151 'type', noise_type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); | |
1152 % Constant signal | |
1153 a_c = ao(trend_0_2); | |
1154 | |
1155 % Total signal | |
1156 a_2 = a_n + a_c; | |
1157 | |
1158 % Set units | |
1159 a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); | |
1160 a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); | |
1161 | |
1162 % Evaluate the cpsd of the white noise time-series data | |
1163 olap = 0; | |
1164 detrend_order = 0; | |
1165 | |
1166 switch lower(win_type) | |
1167 case 'kaiser' | |
1168 psll = find(pli, 'psll'); | |
1169 if isempty(psll) | |
1170 psll = find(ao.getInfo('psd').plists, 'psll'); | |
1171 end | |
1172 pl_spec = plist('Win', win_type, 'psll', psll, 'olap', olap, 'order', detrend_order); | |
1173 | |
1174 case 'levelledhanning' | |
1175 levelCoef = find(pli, 'levelCoef'); | |
1176 if isempty(levelCoef) | |
1177 levelCoef = 1; | |
1178 end | |
1179 pl_spec = plist('Win', win_type, 'levelCoef', levelCoef, 'olap', olap, 'order', detrend_order); | |
1180 | |
1181 otherwise | |
1182 pl_spec = plist('Win', win_type, 'olap', olap, 'order', detrend_order); | |
1183 | |
1184 end | |
1185 | |
1186 if find(pli, 'win_obj') | |
1187 % Calls the cpsd applying the detrend and window internally | |
1188 % (passig window object) | |
1189 spec2.pl = pl_spec; | |
1190 spec2.Cxy = cpsd(a_1, a_2, spec2.pl); | |
1191 spec2.Cyx = cpsd(a_2, a_1, spec2.pl); | |
1192 spec2.Cxx = cpsd(a_1, a_1, spec2.pl); | |
1193 spec2.Cyy = cpsd(a_2, a_2, spec2.pl); | |
1194 spec2.S_1 = simplifyYunits(psd(a_1, spec2.pl), ... | |
1195 plist('prefixes', false, 'exceptions','Hz')); | |
1196 spec2.S_2 = simplifyYunits(psd(a_2, spec2.pl), ... | |
1197 plist('prefixes', false, 'exceptions','Hz')); | |
1198 else | |
1199 spec2 = struct; | |
1200 end | |
1201 % Calls the cpsd applying the detrend and window internally | |
1202 % (passig window name) | |
1203 spec1.pl = pl_spec.pset('Win', win_type); | |
1204 spec1.Cxy = cpsd(a_1, a_2, spec1.pl); | |
1205 spec1.Cyx = cpsd(a_2, a_1, spec1.pl); | |
1206 spec1.Cxx = cpsd(a_1, a_1, spec1.pl); | |
1207 spec1.Cyy = cpsd(a_2, a_2, spec1.pl); | |
1208 spec1.S_1 = simplifyYunits(psd(a_1, spec1.pl), ... | |
1209 plist('prefixes', false, 'exceptions','Hz')); | |
1210 spec1.S_2 = simplifyYunits(psd(a_2, spec1.pl), ... | |
1211 plist('prefixes', false, 'exceptions','Hz')); | |
1212 | |
1213 end | |
1214 | |
1215 %% Helper function for window call construction, navs option | |
1216 | |
1217 function [a_1, a_2, C1, C2, navs] = prepare_analyze_noise_navs(noise_type, pli) | |
1218 % Array of parameters to pick from | |
1219 fs_list = [0.1;1;2;5;10]; | |
1220 nsecs_list = [2000:1000:10000]'; | |
1221 sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; | |
1222 trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; | |
1223 | |
1224 % Build time-series test data | |
1225 | |
1226 % Picks the values at random from the list | |
1227 fs = utils.math.randelement(fs_list, 1); | |
1228 nsecs = utils.math.randelement(nsecs_list, 1); | |
1229 sigma_distr = utils.math.randelement(sigma_distr_list, 1); | |
1230 trend_0 = utils.math.randelement(trend_0_list, 1); | |
1231 | |
1232 % Pick units and prefix from those supported | |
1233 unit_list = unit.supportedUnits; | |
1234 % remove the first empty unit '' from the list, because then is it | |
1235 % possible that we add a prefix to an empty unit | |
1236 unit_list = unit_list(2:end); | |
1237 prefix_list = unit.supportedPrefixes; | |
1238 | |
1239 % White noise | |
1240 a_n1 = ao(plist('waveform', 'noise', ... | |
1241 'type', noise_type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); | |
1242 a_n2 = ao(plist('waveform', 'noise', ... | |
1243 'type', noise_type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); | |
1244 | |
1245 % Constant signal | |
1246 a_c = ao(trend_0); | |
1247 | |
1248 % Total signals | |
1249 a_1 = a_n1 + a_c; | |
1250 a_2 = a_n2 + a_c; | |
1251 | |
1252 % Set units | |
1253 a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); | |
1254 a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); | |
1255 | |
1256 % Evaluate the cpsd of the white noise time-series data | |
1257 olap = 0; | |
1258 detrend_order = 0; | |
1259 n_pts = -1; | |
1260 | |
1261 navs = fix(utils.math.randelement(logspace(0,log10(max(0,a_1.len/10)),50),1)); | |
1262 | |
1263 % Evaluate the cpsd of the white noise time-series data | |
1264 % Window | |
1265 win_list = specwin.getTypes; | |
1266 win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); | |
1267 win_type = win_type{1}; | |
1268 | |
1269 switch lower(win_type) | |
1270 case 'kaiser' | |
1271 psll = utils.math.randelement([0:10:200],1); | |
1272 if psll == 0 | |
1273 psll = find(ao.getInfo('psd').plists, 'psll'); | |
1274 end | |
1275 pl_spec = plist('Win', win_type, 'psll', psll, 'olap', olap, 'order', detrend_order); | |
1276 otherwise | |
1277 pl_spec = plist('Win', win_type, 'olap', olap, 'order', detrend_order); | |
1278 end | |
1279 | |
1280 % Calls cpsd asking for the number of averages | |
1281 pl_spec.pset('Nfft', n_pts, 'navs', navs); | |
1282 C1 = cpsd(a_1, a_2, pl_spec); | |
1283 | |
1284 % Calls cpsd asking for the number of points just evaluated | |
1285 pl_spec.pset('Nfft', find(C1.hist.plistUsed, 'Nfft')); | |
1286 pl_spec.remove('navs'); | |
1287 C2 = cpsd(a_1, a_2, pl_spec); | |
1288 | |
1289 end | |
1290 | |
1291 end |