Mercurial > hg > ltpda
view testing/utp_1.1/utps/ao/utp_ao_cpsd.m @ 52:daf4eab1a51e database-connection-manager tip
Fix. Default password should be [] not an empty string
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 07 Dec 2011 17:29:47 +0100 |
parents | 409a22968d5e |
children |
line wrap: on
line source
% UTP_AO_CPSD a set of UTPs for the ao/cpsd method % % M Hewitson 06-08-08 % % $Id: utp_ao_cpsd.m,v 1.43 2011/07/22 11:51:46 mauro Exp $ % % <MethodDescription> % % The cpsd method of the ao class computes the cross-spectral density between two % time-series AOs. % % </MethodDescription> function results = utp_ao_cpsd(varargin) % Check the inputs if nargin == 0 % Some keywords class = 'ao'; mthd = 'cpsd'; results = []; disp('******************************************************'); disp(['**** Running UTPs for ' class '/' mthd]); disp('******************************************************'); % Test AOs [at1,at2,at3,at4,at5,at6] = eval(['get_test_objects_' class]); % Exception list for the UTPs: [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples(); % Get default window from the preferences prefs = getappdata(0, 'LTPDApreferences'); defaultWinType = char(prefs.getMiscPrefs.getDefaultWindow); % Run the tests results = [results utp_01]; % getInfo call results = [results utp_02]; % Vector input (only with two objects) results = [results utp_03]; % Matrix input (not possible) results = [results utp_04]; % List input (only with two objects) results = [results utp_05]; % Test with mixed input (not possible) results = [results utp_06]; % Test history is working results = [results utp_07]; % Test the modify call works results = [results utp_08]; % Test input data shape == output data shape results = [results utp_09]; % Test output of the data results = [results utp_10]; % Test against MATLAB's cpsd() results = [results utp_11(mthd, [at1 at1], ple1)]; % Test plotinfo doesn't disappear results = [results utp_17]; % Test units handling: CPSD results = [results utp_18]; % Comparison with PSD results = [results utp_24]; % Test data lengths results = [results utp_25]; % Test Kaiser win and olap: CPSD results = [results utp_51]; % Test number of averages: requested/obtained results = [results utp_52]; % Test number of averages: correct number results = [results utp_53]; % Test number of averages: syntax disp('Done.'); disp('******************************************************'); elseif nargin == 1 % Check for UTP functions if strcmp(varargin{1}, 'isutp') results = 1; else results = 0; end else error('### Incorrect inputs') end %% UTP_01 % <TestDescription> % % Tests that the getInfo call works for this method. % % </TestDescription> function result = utp_01 % <SyntaxDescription> % % Test that the getInfo call works for no sets, all sets, and each set % individually. % % </SyntaxDescription> try % <SyntaxCode> % Call for no sets io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']); % Call for all sets io(2) = eval([class '.getInfo(''' mthd ''')']); % Call for each set for kk=1:numel(io(2).sets) io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']); end % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that getInfo call returned an minfo object in all cases. % 2) Check that all plists have the correct parameters. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % check we have minfo objects if isa(io, 'minfo') % SET 'None' if ~isempty(io(1).sets), atest = false; end if ~isempty(io(1).plists), atest = false; end % Check all Sets if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end % SET 'Default' if io(3).plists.nparams ~= 8, atest = false; end % Check key if ~io(3).plists.isparam('nfft'), atest = false; end if ~io(3).plists.isparam('win'), atest = false; end if ~io(3).plists.isparam('olap'), atest = false; end if ~io(3).plists.isparam('order'), atest = false; end if ~io(3).plists.isparam('navs'), atest = false; end if ~io(3).plists.isparam('times'), atest = false; end if ~io(3).plists.isparam('split'), atest = false; end if ~io(3).plists.isparam('psll'), atest = false; end % Check default value if ~isequal(io(3).plists.find('nfft'), -1), atest = false; end if ~strcmpi(io(3).plists.find('win'), defaultWinType), atest = false; end if ~isequal(io(3).plists.find('olap'), -1), atest = false; end if ~isequal(io(3).plists.find('order'), 0), atest = false; end if ~isequal(io(3).plists.find('navs'), -1), atest = false; end if ~isEmptyDouble(io(3).plists.find('times')), atest = false; end if ~isEmptyDouble(io(3).plists.find('split')), atest = false; end if ~isequal(io(3).plists.find('psll'), 200), atest = false; end % Check options if ~isequal(io(3).plists.getOptionsForParam('nfft'), {-1}), atest = false; disp('1'); end if ~isequal(io(3).plists.getOptionsForParam('win'), specwin.getTypes), atest = false;disp('2'); end if ~isequal(io(3).plists.getOptionsForParam('olap'), {-1}), atest = false; disp('3');end if ~isequal(io(3).plists.getOptionsForParam('order'), {-1 0 1 2 3 4 5 6 7 8 9}), atest = false;disp('4'); end if ~isequal(io(3).plists.getOptionsForParam('navs'), {-1}), atest = false;disp('5'); end if ~isequal(io(3).plists.getOptionsForParam('times'), {[]}), atest = false;disp('6'); end if ~isequal(io(3).plists.getOptionsForParam('split'), {[]}), atest = false;disp('6'); end if ~isequal(io(3).plists.getOptionsForParam('psll'), {200}), atest = false;disp('7'); end end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_01 %% UTP_02 % <TestDescription> % % Tests that the cpsd method works with a vector of AOs as input. (only % with two objects in the vector) % % </TestDescription> function result = utp_02 % <SyntaxDescription> % % Test that the cpsd method works for a vector of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> avec = [at1 at5]; out = cpsd(avec); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the number of elements in 'out' is equal to 1 % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have the correct number of outputs if numel(out) ~= 1, atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_02 %% UTP_03 % <TestDescription> % % Tests that the cpsd method doesn't work with a matrix of AOs as input. % % </TestDescription> function result = utp_03 % <SyntaxDescription> % % Test that the cpsd method doesn't work for a matrix of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> amat = [at1 at5 at6; at5 at6 at1]; out = cpsd(amat); % </SyntaxCode> stest = false; catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_03 %% UTP_04 % <TestDescription> % % Tests that the cpsd method works with a list of AOs as input. % % </TestDescription> function result = utp_04 % <SyntaxDescription> % % Test that the cpsd method works for a list of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> out = cpsd(at1,at5); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the number of elements in 'out' is equal to 1 % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have the correct number of outputs if numel(out) ~= 1, atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_04 %% UTP_05 % <TestDescription> % % Tests that the cpsd method doesn't work with a mix of different shaped % AOs as input. % % </TestDescription> function result = utp_05 % <SyntaxDescription> % % Test that the cpsd method doesn't work with an input of matrices and % vectors and single AOs. % % </SyntaxDescription> try % <SyntaxCode> out = cpsd([at5 at6],[at5 at1; at6 at1],at6); stest = false; % </SyntaxCode> catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_05 %% UTP_06 % <TestDescription> % % Tests that the cpsd method properly applies history. % % </TestDescription> function result = utp_06 % <SyntaxDescription> % % Test that the result of applying the cpsd method can be processed back % to an m-file. % % </SyntaxDescription> try % <SyntaxCode> out = cpsd(at5,at6); mout = rebuild(out); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the last entry in the history of 'out' corresponds to % 'cpsd'. % 2) Check that the re-built object is the same as 'out'. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check the last step in the history of 'out' if ~strcmp(out.hist.methodInfo.mname, 'cpsd'), atest = false; end % Check the re-built object if ~eq(mout, out, ple2), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_06 %% UTP_07 % <TestDescription> % % Tests that the cpsd method can not modify the input AO. % % </TestDescription> function result = utp_07 % <SyntaxDescription> % % Test that the cpsd method can not modify the input AO. % The method must throw an error for the modifier call. % % </SyntaxDescription> try % <SyntaxCode> % copy at1 to work with ain = ao(at1); % modify ain ain.cpsd(at5); % </SyntaxCode> stest = false; catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_07 %% UTP_08 % <TestDescription> % % Test the shape of the output. % % </TestDescription> function result = utp_08 % <SyntaxDescription> % % Test that the cpsd method keeps the data shape of the input object. The % input AO must be an AO with row data and an AO with column data. % % </SyntaxDescription> try % <SyntaxCode> out1 = cpsd(at5, at6); out2 = cpsd(at6, at5); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the shape of the output data doesn't change. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check the shape of the output data if size(out1.data.y, 2) ~= 1, atest = false; end if size(out2.data.y, 1) ~= 1, atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_08 %% UTP_09 % <TestDescription> % % Check that the cpsd method pass back the output objects to a list of % output variables or to a single variable. % % </TestDescription> function result = utp_09 % <SyntaxDescription> % % This test is not longer necessary because the cpsd method pass back % always only one object. % % </SyntaxDescription> try % <SyntaxCode> % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_09 %% UTP_10 % <TestDescription> % % Tests that the cpsd method agrees with MATLAB's cpsd when % configured to use the same parameters. % % </TestDescription> function result = utp_10 % <SyntaxDescription> % % Test that applying cpsd works on two AOs. % % </SyntaxDescription> try % <SyntaxCode> % Construct two test AOs nsecs = 10; fs = 1000; pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'randn(size(t))'); a1 = ao(pl); a2 = ao(pl); % Filter one time-series f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [50 250])); a1f = filter(a1, plist('filter', f2)); % make some cross-power a4 = a1f+a2; a4.setName; % Compute cpsd Nfft = 2*fs; win = specwin('Hanning', Nfft); pl = plist('Nfft', Nfft, 'Win', win.type, 'order', -1); out = cpsd(a4,a1,pl); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that output agrees with the output of MATLAB's cpsd. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Compute cpsd using MATLAB's cpsd [cxy, f] = cpsd(a4.data.y, a1.data.y, win.win, Nfft/2, Nfft, a1.data.fs); if ~utils.math.isequal(cxy(:), out.data.y(:)) || ~utils.math.isequal(f, out.data.getX), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_10 %% UTP_17 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) CPSD of the white noise series % 4) compares the units of the input and output % % </TestDescription> function result = utp_17 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) CPSD of the white noise % % </SyntaxDescription> % <SyntaxCode> try noise_type = 'Normal'; win_type = 'BH92'; [a_1, a_2, spec, spec1] = prepare_analyze_noise(win_type, noise_type, plist); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that (calculated CPSD yunits) equals % input_1 units*input_2 units/Hz % % </AlgoDescription> % <AlgoCode> atest = true; u = simplifyYunits(a_1.* a_2, plist('prefixes', false, 'exceptions', 'Hz')); if stest if ne(spec.Cxy.yunits, u.yunits * unit('Hz^-1')) || ne(spec.Cxy.xunits, unit('Hz')) atest = false; end if ne(spec.Cyx.yunits, u.yunits * unit('Hz^-1')) || ne(spec.Cyx.xunits, unit('Hz')) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_17 %% UTP_18 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) CPSD of the white noise series % % Comparison with PSD: % 4) compares the off-diagonal terms to check they are complex-conjugated % 5) compares the diagonal terms with PSD of the individual noise % % </TestDescription> function result = utp_18 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) CPSD of the white noise % 6) PSD of the white noise % % </SyntaxDescription> % <SyntaxCode> try noise_type = 'Uniform'; win_type = 'BH92'; [a_1, a_2, spec, spec2] = prepare_analyze_noise(win_type, noise_type, plist); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that CPSD(x,y) equals conj(CPSD(y,x)) % 2) Check that CPSD(x,x) equals PSD(x) % 3) Check that CPSD(y,y) equals PSD(y) % % </AlgoDescription> % <AlgoCode> atest = true; if stest if ne(spec.Cxy.y, conj(spec.Cyx.y)), atest = false; end if ne(spec.Cxy.x, spec.Cyx.x), atest = false; end if ne(spec.Cxx.data, spec.S_1.data), atest = false; end if ne(spec.Cyy.data, spec.S_2.data), atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_18 %% UTP_24 % <TestDescription> % % Tests that differently sized data sets are treated properly % % </TestDescription> function result = utp_24 % <SyntaxDescription> % % Test that applying cpsd works on two AOs. % % </SyntaxDescription> try % <SyntaxCode> % Construct two test AOs nsecs = [10000:1:20000]; fs = 1; pl = plist('fs', fs, 'tsfcn', 'randn(size(t))'); a1 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); a2 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); len_1 = a1.len; len_2 = a2.len; % Filter one time-series f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [.050 .25])); a1f = filter(a1, plist('filter', f2)); % Compute cpsd Nfft = -1; win = 'Hanning'; pl = plist('Nfft', Nfft, 'Win', win, 'order', -1); out = cpsd(a2,a1f,pl); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that cpsd used the length of the shortest ao. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Compare the nfft with the length of the input data if out.x(2) ~= 1/min(len_1,len_2) atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_24 %% UTP_25 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) CPSD of the white noise series % 4) compares the units of the input and output % % </TestDescription> function result = utp_25 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) CPSD of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; sigma_distr_2 = 6.04e-9; mu_distr_2 = 1.5e-10; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); a_const = ao(mu_distr_2); a_2 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the cpsd of the time-series data, using Kaiser window % Psll and olap are not set win = ('Kaiser'); detrend = 0; n_pts = nsecs*fs/10; C = cpsd(a_1, a_2, plist('Win', win, 'Nfft', n_pts, 'order', detrend)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that (calculated CPSD yunits) equals %input_1 units*input_2 units/Hz % </AlgoDescription> % <AlgoCode> atest = true; u = simplifyYunits(a_1.* a_2, plist('prefixes', false, 'exceptions', 'Hz')); if stest if ne(C.yunits, u.yunits * unit('Hz^-1')) || ne(C.xunits, unit('Hz')) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_25 %% UTP_51 % <TestDescription> % % Tests the possibility to set the number of averages rather than setting the Nfft: % 1) white noise produced from normal pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cpsd of the noise, without detrending, random window, set number of % averages % 3) check the effective number of averages % % </TestDescription> function result = utp_51 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) cpsd of the noise, without detrending, random window, set number of % averages % % </SyntaxDescription> % <SyntaxCode> try noise_type = 'Normal'; % Evaluate the cpsd of the white noise time-series data [a_1, a_2, C1, C2, navs] = prepare_analyze_noise_navs(noise_type, plist); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that calculated navs are identical to those requested % % </AlgoDescription> % <AlgoCode> atest = true; if stest if ne(navs, C1.data.navs) if ne(find(C1.hist.plistUsed, 'navs'), C1.data.navs) atest = false; end end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_51 %% UTP_52 % <TestDescription> % % Tests the possibility to set the number of averages rather than setting the Nfft: % 1) white noise produced from uniform pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cpsd of the noise, without detrending, random window, random navs % 3) get the number of averages % 4) get the nfft used % 5) run cpsd again, with the nfft used % 6) compare the calculated objects % % </TestDescription> function result = utp_52 % <SyntaxDescription> % % 1) white noise produced from uniform pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cpsd of the noise, without detrending, random window, random navs % 3) get the number of averages % 4) get the nfft used % 5) run cpsd again, with the nfft used % % </SyntaxDescription> % <SyntaxCode> try noise_type = 'Uniform'; % Evaluate the cpsd of the white noise time-series data [a_1, a_2, C1, C2, navs] = prepare_analyze_noise_navs(noise_type, plist); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that calculated objects C1 and C2 are identical % % </AlgoDescription> % <AlgoCode> atest = true; if stest % Compare the output objects if ne(C1, C2, ple3) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_52 %% UTP_53 % <TestDescription> % % Tests the possibility to set the number of averages rather than setting the Nfft: % 1) white noise produced from normal pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cpsd of the noise, without detrending, random window, random navs % 3) get the number of averages % 4) get the nfft used % 5) run cpsd again, with the nfft used % 6) compare navs, nfft, psds % % </TestDescription> function result = utp_53 % <SyntaxDescription> % % 1) white noise produced from normal pdf, with: % a given mean value and sigma (distribution's 1st and 2nd order) % 2) cpsd of the noise, without detrending, random window, random navs % 3) get the number of averages % 4) get the nfft used % 5) run cpsd again, with the nfft used % 6) run cpsd again, with conflicting parameters, and verify it uses % nfft rather than navs % % </SyntaxDescription> % <SyntaxCode> try noise_type = 'Uniform'; % Evaluate the cpsd of the white noise time-series data [a_1, a_2, C1, C2, navs] = prepare_analyze_noise_navs(noise_type, plist); npts_3 = fix(find(C1.hist.plistUsed, 'Nfft')/2); % Calculates the cpsd asking for the number of points AND the window length pl_spec = C1.hist.plistUsed; pl_spec.pset('Nfft', npts_3, 'navs', navs); C3 = cpsd(a_1, a_2, pl_spec); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that calculated objects C1 and C2 are identical % 2) Check that C3 used different values % % </AlgoDescription> % <AlgoCode> atest = true; if stest % Compare the navs written in the output object with the requested one if ne(C1,C2,ple3) || ... ne(find(C3.hist.plistUsed, 'Nfft'), npts_3) || eq(C3.data.navs, navs) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_53 %% Helper function for window call construction function [a_1, a_2, spec1, spec2] = prepare_analyze_noise(win_type, noise_type, pli) % Array of parameters to pick from fs_list = [0.1;1;2;5;10]; nsecs_list = [20 100 1000:1000:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr_1 = utils.math.randelement(sigma_distr_list, 1); sigma_distr_2 = utils.math.randelement(sigma_distr_list, 1); trend_0_1 = utils.math.randelement(trend_0_list, 1); trend_0_2 = utils.math.randelement(trend_0_list, 1); % Pick units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; % White noise a_n = ao(plist('waveform', 'noise', ... 'type', noise_type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); % Constant signal a_c = ao(trend_0_1); % Total signal a_1 = a_n + a_c; % White noise a_n = ao(plist('waveform', 'noise', ... 'type', noise_type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); % Constant signal a_c = ao(trend_0_2); % Total signal a_2 = a_n + a_c; % Set units a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the cpsd of the white noise time-series data olap = 0; detrend_order = 0; switch lower(win_type) case 'kaiser' psll = find(pli, 'psll'); if isempty(psll) psll = find(ao.getInfo('psd').plists, 'psll'); end pl_spec = plist('Win', win_type, 'psll', psll, 'olap', olap, 'order', detrend_order); case 'levelledhanning' levelCoef = find(pli, 'levelCoef'); if isempty(levelCoef) levelCoef = 1; end pl_spec = plist('Win', win_type, 'levelCoef', levelCoef, 'olap', olap, 'order', detrend_order); otherwise pl_spec = plist('Win', win_type, 'olap', olap, 'order', detrend_order); end if find(pli, 'win_obj') % Calls the cpsd applying the detrend and window internally % (passig window object) spec2.pl = pl_spec; spec2.Cxy = cpsd(a_1, a_2, spec2.pl); spec2.Cyx = cpsd(a_2, a_1, spec2.pl); spec2.Cxx = cpsd(a_1, a_1, spec2.pl); spec2.Cyy = cpsd(a_2, a_2, spec2.pl); spec2.S_1 = simplifyYunits(psd(a_1, spec2.pl), ... plist('prefixes', false, 'exceptions','Hz')); spec2.S_2 = simplifyYunits(psd(a_2, spec2.pl), ... plist('prefixes', false, 'exceptions','Hz')); else spec2 = struct; end % Calls the cpsd applying the detrend and window internally % (passig window name) spec1.pl = pl_spec.pset('Win', win_type); spec1.Cxy = cpsd(a_1, a_2, spec1.pl); spec1.Cyx = cpsd(a_2, a_1, spec1.pl); spec1.Cxx = cpsd(a_1, a_1, spec1.pl); spec1.Cyy = cpsd(a_2, a_2, spec1.pl); spec1.S_1 = simplifyYunits(psd(a_1, spec1.pl), ... plist('prefixes', false, 'exceptions','Hz')); spec1.S_2 = simplifyYunits(psd(a_2, spec1.pl), ... plist('prefixes', false, 'exceptions','Hz')); end %% Helper function for window call construction, navs option function [a_1, a_2, C1, C2, navs] = prepare_analyze_noise_navs(noise_type, pli) % Array of parameters to pick from fs_list = [0.1;1;2;5;10]; nsecs_list = [2000:1000:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); trend_0 = utils.math.randelement(trend_0_list, 1); % Pick units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; % White noise a_n1 = ao(plist('waveform', 'noise', ... 'type', noise_type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_n2 = ao(plist('waveform', 'noise', ... 'type', noise_type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); % Constant signal a_c = ao(trend_0); % Total signals a_1 = a_n1 + a_c; a_2 = a_n2 + a_c; % Set units a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the cpsd of the white noise time-series data olap = 0; detrend_order = 0; n_pts = -1; navs = fix(utils.math.randelement(logspace(0,log10(max(0,a_1.len/10)),50),1)); % Evaluate the cpsd of the white noise time-series data % Window win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; switch lower(win_type) case 'kaiser' psll = utils.math.randelement([0:10:200],1); if psll == 0 psll = find(ao.getInfo('psd').plists, 'psll'); end pl_spec = plist('Win', win_type, 'psll', psll, 'olap', olap, 'order', detrend_order); otherwise pl_spec = plist('Win', win_type, 'olap', olap, 'order', detrend_order); end % Calls cpsd asking for the number of averages pl_spec.pset('Nfft', n_pts, 'navs', navs); C1 = cpsd(a_1, a_2, pl_spec); % Calls cpsd asking for the number of points just evaluated pl_spec.pset('Nfft', find(C1.hist.plistUsed, 'Nfft')); pl_spec.remove('navs'); C2 = cpsd(a_1, a_2, pl_spec); end end