Mercurial > hg > ltpda
comparison m-toolbox/classes/@ao/wosa.m @ 43:bc767aaa99a8
CVS Update
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 11:09:25 +0100 (2011-12-06) |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:f0afece42f48 | 43:bc767aaa99a8 |
---|---|
1 % WOSA implements Welch's overlaped segmented averaging algorithm with | |
2 % segment detrending and variance estimation. | |
3 % | |
4 % [pxx, f, info] = wosa(x,type,pl) | |
5 % [pxx, f, info] = wosa(x,y,type,pl) | |
6 % | |
7 % INPUTS: x - input analysis objects | |
8 % y - input analysis objects | |
9 % type - type of estimation: | |
10 % 'psd' - compute Power Spectral Denstiy (PSD) | |
11 % 'cpsd' - compute cross-spectral density | |
12 % 'tfe' - estimate transfer function between inputs | |
13 % 'mscohere' - estimate magnitude-squared cross-coherence | |
14 % 'cohere' - estimate complex cross-coherence | |
15 % pl - input parameter list | |
16 % | |
17 % PARAMETERS: 'Win' - a specwin window object [default: Kaiser -200dB psll] | |
18 % 'Olap' - segment percent overlap [default: taken from window function] | |
19 % 'Nfft' - number of samples in each fft [default: length of input data] | |
20 % 'Scale' - one of | |
21 % 'ASD' - amplitude spectral density | |
22 % 'PSD' - power spectral density [default] | |
23 % 'AS' - amplitude spectrum | |
24 % 'PS' - power spectrum | |
25 % * applies only to spectrum 'Type' 'psd' | |
26 % 'Order' - order of segment detrending | |
27 % -1 - no detrending | |
28 % 0 - subtract mean [default] | |
29 % 1 - subtract linear fit | |
30 % N - subtract fit of polynomial, order N | |
31 % | |
32 % Version: $Id: wosa.m,v 1.5 2011/12/02 07:08:11 hewitson Exp $ | |
33 % | |
34 | |
35 function varargout = wosa(varargin) | |
36 import utils.const.* | |
37 | |
38 % Process inputs | |
39 if nargin == 3 | |
40 a = varargin{1}; | |
41 esttype = varargin{2}; | |
42 pl = varargin{3}; | |
43 inunits = a.data.yunits; | |
44 L = a.len; | |
45 else | |
46 a = varargin{1}; | |
47 b = varargin{2}; | |
48 esttype = varargin{3}; | |
49 pl = varargin{4}; | |
50 if a.data.fs ~= b.data.fs | |
51 error('The two time-series have different sample rates.'); | |
52 end | |
53 inunits = b.data.yunits / a.data.yunits; | |
54 L = min(a.len, b.len); | |
55 end | |
56 | |
57 % Parse inputs | |
58 win = find(pl, 'Win'); | |
59 nfft = find(pl, 'Nfft'); | |
60 percentOlap = find(pl, 'Olap')/100; | |
61 scale = find(pl, 'scale'); | |
62 xOlap = round(percentOlap*nfft); | |
63 detrendOrder = find(pl, 'order'); | |
64 fs = a.fs; | |
65 winVals = win.win.'; % because we always get a column from ao.y | |
66 | |
67 % Compute segment details | |
68 | |
69 nSegments = fix((L - xOlap)./(nfft - xOlap)); | |
70 utils.helper.msg(msg.PROC3, 'N segment: %d', nfft); | |
71 utils.helper.msg(msg.PROC3, 'N overlap: %d', xOlap); | |
72 utils.helper.msg(msg.PROC3, 'N segments: %d', nSegments); | |
73 | |
74 % Compute start and end indices of each segment | |
75 segmentStep = nfft-xOlap; | |
76 segmentStarts = 1:segmentStep:nSegments*segmentStep; | |
77 segmentEnds = segmentStarts+nfft-1; | |
78 | |
79 % Estimate the averaged periodogram for the desired quantity | |
80 switch lower(esttype) | |
81 case 'psd' | |
82 % Compute averaged periodogram | |
83 [Sxx, Svxx] = psdPeriodogram(a, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); | |
84 case 'cpsd' | |
85 [Sxx, Svxx] = cpsdPeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); | |
86 case 'tfe' | |
87 [Sxx, Sxy, Syy] = tfePeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); | |
88 case {'mscohere','cohere'} | |
89 [Sxx, Sxy, Syy] = tfePeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); | |
90 otherwise | |
91 error('Unknown estimation type %s', esttype); | |
92 end | |
93 | |
94 % Scale to PSD | |
95 switch lower(esttype) | |
96 case {'psd','cpsd'} | |
97 [P, Pvxx] = scaleToPSD(Sxx, Svxx, nfft, fs); | |
98 % the 1/nSegments factor should come after welchscale if we don't | |
99 % want to apply sqrt() to it. | |
100 % We correct for that here. It is only needed for 'asd','as' in | |
101 % psd/cpsd, the other cases go always through 'PSD'. | |
102 if (strcmpi(scale,'PSD') || strcmpi(scale,'PS')) | |
103 dP = Pvxx; | |
104 elseif (strcmpi(scale,'ASD') || strcmpi(scale,'AS')) | |
105 dP = Pvxx/nSegments; | |
106 else | |
107 error('### Unknown scale') | |
108 end | |
109 case 'tfe' | |
110 % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power]. | |
111 % Also, corresponding freq vector and freq units. | |
112 % In the Cross PSD, the frequency vector and xunits are not used. | |
113 Pxx = scaleToPSD(Sxx, [], nfft, fs); | |
114 Pxy = scaleToPSD(Sxy, [], nfft, fs); | |
115 Pyy = scaleToPSD(Syy, [], nfft, fs); | |
116 % mean and std | |
117 P = Pxy ./ Pxx; % Txy | |
118 if nSegments == 1 | |
119 dP =[]; | |
120 else | |
121 dP = (nSegments/(nSegments-1)^2)*(Pyy./Pxx).*(1 - (abs(Pxy).^2)./(Pxx.*Pyy)); | |
122 end | |
123 case 'mscohere' | |
124 % Magnitude Square Coherence estimate. | |
125 % Auto PSD for 2nd input vector. The freq vector & xunits are not | |
126 % used. | |
127 Pxx = scaleToPSD(Sxx, [], nfft, fs); | |
128 Pxy = scaleToPSD(Sxy, [], nfft, fs); | |
129 Pyy = scaleToPSD(Syy, [], nfft, fs); | |
130 % mean and std | |
131 P = (abs(Pxy).^2)./(Pxx.*Pyy); % Magnitude-squared coherence | |
132 dP = (2*P/nSegments).*(1-P).^2; | |
133 case 'cohere' | |
134 % Complex Coherence estimate. | |
135 % Auto PSD for 2nd input vector. The freq vector & xunits are not | |
136 % used. | |
137 Pxx = scaleToPSD(Sxx, [], nfft, fs); | |
138 Pxy = scaleToPSD(Sxy, [], nfft, fs); | |
139 Pyy = scaleToPSD(Syy, [], nfft, fs); | |
140 P = Pxy./sqrt(Pxx.*Pyy); % Complex coherence | |
141 dP = (2*abs(P)/nSegments).*(1-abs(P)).^2; | |
142 | |
143 end | |
144 | |
145 % Compute frequencies | |
146 freqs = psdfreqvec('npts', nfft,'Fs', fs, 'Range', 'half').'; | |
147 | |
148 % Scale to required units | |
149 [Pxx, dP, info] = utils.math.welchscale(P, dP, winVals, fs, scale, inunits); | |
150 info.navs = nSegments; | |
151 | |
152 if nSegments ==1 | |
153 dev = []; | |
154 else | |
155 dev = sqrt(dP); | |
156 end | |
157 | |
158 % Set outputs | |
159 varargout = {Pxx, freqs, info, dev}; | |
160 | |
161 end | |
162 | |
163 % scale averaged periodogram to PSD | |
164 function [Pxx, Pvxx] = scaleToPSD(Sxx, Svxx, nfft, fs) | |
165 | |
166 % Take 1-sided spectrum which means we double the power in the | |
167 % appropriate bins | |
168 if rem(nfft,2), | |
169 indices = 1:(nfft+1)/2; % ODD | |
170 Sxx1sided = Sxx(indices,:); | |
171 % double the power except for the DC bin | |
172 Sxx = [Sxx1sided(1,:); 2*Sxx1sided(2:end,:)]; | |
173 if ~isempty(Svxx) | |
174 Svxx1sided = Svxx(indices,:); | |
175 Svxx = [Svxx1sided(1,:); 4*Svxx1sided(2:end,:)]; | |
176 end | |
177 else | |
178 indices = 1:nfft/2+1; % EVEN | |
179 Sxx1sided = Sxx(indices,:); | |
180 % Double power except the DC bin and the Nyquist bin | |
181 Sxx = [Sxx1sided(1,:); 2*Sxx1sided(2:end-1,:); Sxx1sided(end,:)]; | |
182 if ~isempty(Svxx) | |
183 Svxx1sided = Svxx(indices,:); % Take only [0,pi] or [0,pi) | |
184 Svxx = [Svxx1sided(1,:); 4*Svxx1sided(2:end-1,:); Svxx1sided(end,:)]; | |
185 end | |
186 end | |
187 | |
188 % Now scale to PSD | |
189 Pxx = Sxx./fs; | |
190 Pvxx = Svxx./fs^2; | |
191 | |
192 end | |
193 | |
194 % compute tfe | |
195 function [Sxx, Sxy, Syy] = tfePeriodogram(x, y, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) | |
196 | |
197 nfft = segmentEnds(1); | |
198 Sxx = zeros(nfft,1); % Initialize Sxx | |
199 Sxy = zeros(nfft,1); % Initialize Sxy | |
200 Syy = zeros(nfft,1); % Initialize Syy | |
201 % loop over segments | |
202 for ii = 1:nSegments | |
203 if detrendOrder < 0 | |
204 xseg = x.y(segmentStarts(ii):segmentEnds(ii)); | |
205 yseg = y.y(segmentStarts(ii):segmentEnds(ii)); | |
206 else | |
207 [xseg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); | |
208 [yseg,coeffs] = ltpda_polyreg(y.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); | |
209 end | |
210 | |
211 % Compute periodograms | |
212 Sxxk = wosa_periodogram(xseg, [], winVals, nfft); | |
213 Sxyk = wosa_periodogram(yseg, xseg, winVals, nfft); | |
214 Syyk = wosa_periodogram(yseg, [], winVals, nfft); | |
215 | |
216 Sxx = Sxx + Sxxk; | |
217 Sxy = Sxy + Sxyk; | |
218 Syy = Syy + Syyk; | |
219 % don't need to be divided by k because only rations are used here | |
220 end | |
221 | |
222 end | |
223 | |
224 % compute cpsd | |
225 function [Sxx, Svxx] = cpsdPeriodogram(x, y, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) | |
226 | |
227 Mnxx = 0; | |
228 Mn2xx = 0; | |
229 nfft = segmentEnds(1); | |
230 for ii = 1:nSegments | |
231 if detrendOrder < 0 | |
232 xseg = x.y(segmentStarts(ii):segmentEnds(ii)); | |
233 yseg = y.y(segmentStarts(ii):segmentEnds(ii)); | |
234 else | |
235 [xseg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); | |
236 [yseg,coeffs] = ltpda_polyreg(y.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); | |
237 end | |
238 | |
239 % Compute periodogram | |
240 Sxxk = wosa_periodogram(xseg, yseg, winVals, nfft); | |
241 | |
242 % Welford's algorithm to update mean and variance | |
243 Qxx = Sxxk - Mnxx; | |
244 Mnxx = Mnxx +Qxx/ii; | |
245 Mn2xx = Mn2xx + abs(Qxx.*conj(Sxxk - Mnxx)); | |
246 end | |
247 Sxx = Mnxx; | |
248 if nSegments ==1 | |
249 Svxx = []; | |
250 else | |
251 Svxx = Mn2xx/(nSegments-1)/nSegments; | |
252 end | |
253 | |
254 | |
255 end | |
256 | |
257 % compute psd | |
258 function [Sxx, Svxx] = psdPeriodogram(x, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) | |
259 | |
260 Mnxx = 0; | |
261 Mn2xx = 0; | |
262 nfft = segmentEnds(1); | |
263 % Loop over the segments | |
264 for ii = 1:nSegments | |
265 % Detrend if desired | |
266 if detrendOrder < 0 | |
267 seg = x.y(segmentStarts(ii):segmentEnds(ii)); | |
268 else | |
269 [seg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); | |
270 end | |
271 % Compute periodogram | |
272 Sxxk = wosa_periodogram(seg, [], winVals,nfft); | |
273 % Welford's algorithm for updating mean and variance | |
274 if ii == 1 | |
275 Mnxx = Sxxk; | |
276 else | |
277 Qxx = Sxxk - Mnxx; | |
278 Mnxx = Mnxx + Qxx/ii; | |
279 Mn2xx = Mn2xx + Qxx.*(Sxxk - Mnxx); | |
280 end | |
281 end | |
282 Sxx = Mnxx; | |
283 if nSegments == 1 | |
284 Svxx = []; | |
285 else | |
286 Svxx = Mn2xx/(nSegments-1)/nSegments; | |
287 end | |
288 | |
289 end | |
290 | |
291 % Scaled periodogram of one or two input signals | |
292 function Sxx = wosa_periodogram(x, y, win, nfft) | |
293 | |
294 % window data | |
295 xwin = x.*win; | |
296 isCross = false; | |
297 if ~isempty(y) | |
298 ywin = y.*win; | |
299 isCross = true; | |
300 end | |
301 | |
302 % take fft | |
303 X = fft(xwin, nfft); | |
304 if isCross | |
305 Y = fft(ywin, nfft); | |
306 end | |
307 | |
308 % Compute scale factor to compensate for the window power | |
309 K = win'*win; | |
310 | |
311 % Compute scaled power | |
312 Sxx = X.*conj(X)/K; | |
313 if isCross, | |
314 Sxx = X.*conj(Y)/K; | |
315 end | |
316 | |
317 end |