Mercurial > hg > ltpda
comparison m-toolbox/classes/@ao/filter.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % FILTER overrides the filter function for analysis objects. | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: FILTER overrides the filter function for analysis objects. | |
5 % Applies the input digital IIR/FIR filter to the input analysis | |
6 % object. If the input analysis object contains a | |
7 % time-series (tsdata) then the filter is applied using the normal | |
8 % recursion algorithm. The output analysis object contains a tsdata | |
9 % object. | |
10 % | |
11 % If the input analysis object contains a frequency-series (fsdata) | |
12 % then the response of the filter is computed and then multiplied | |
13 % with the input frequency series. The output analysis object | |
14 % contains a frequency series. | |
15 % | |
16 % CALL: >> [b, filt] = filter(a,pl) | |
17 % >> [b, filt] = filter(a,filt,pl) | |
18 % >> b = filter(a,pl) | |
19 % | |
20 % INPUTS: pl - a parameter list | |
21 % a - input analysis object | |
22 % | |
23 % OUTPUTS: filt - a copy of the input filter object with the | |
24 % history values filled in. | |
25 % (only possible if the ouput is a single AO) | |
26 % b - output analysis object containing the filtered data. | |
27 % | |
28 % PROCINFO: The input filter object with the history values filled in are | |
29 % always stored with a plist in the 'procinfo' property of the AO. | |
30 % The key of the plist to get the filter is 'Filter'. | |
31 % | |
32 % | |
33 % <a href="matlab:utils.helper.displayMethodInfo('ao', 'filter')">Parameters Description</a> | |
34 % | |
35 % VERSION: $Id: filter.m,v 1.86 2011/04/08 08:56:14 hewitson Exp $ | |
36 % | |
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
38 | |
39 function varargout = filter(varargin) | |
40 | |
41 % Check if this is a call for parameters | |
42 if utils.helper.isinfocall(varargin{:}) | |
43 varargout{1} = getInfo(varargin{3}); | |
44 return | |
45 end | |
46 | |
47 import utils.const.* | |
48 utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); | |
49 | |
50 % Collect input variable names | |
51 in_names = cell(size(varargin)); | |
52 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
53 | |
54 % Collect all AOs and plists | |
55 [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); | |
56 [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); | |
57 [fobjs, f_invars] = utils.helper.collect_objects(varargin(:), 'ltpda_filter', in_names); | |
58 [fbobjs, fb_invars] = utils.helper.collect_objects(varargin(:), 'filterbank', in_names); | |
59 [mobjs, m_invars] = utils.helper.collect_objects(varargin(:), 'matrix', in_names); | |
60 | |
61 % Make copies or handles to inputs | |
62 bs = copy(as, nargout); | |
63 | |
64 % combine plists | |
65 pl = parse(pl, getDefaultPlist()); | |
66 | |
67 % Filter with a filterbank object or a matrix | |
68 if ~isempty(fbobjs) | |
69 fobjs = fbobjs.filters; | |
70 pl.pset('bank', fbobjs.type); | |
71 elseif ~isempty(mobjs) | |
72 fobjs = mobjs.objs; | |
73 % check we do not have more than one object into the matrix, if this is | |
74 % the case the problem is considered a N-dimensional filtering problem | |
75 % that can be solved by matrix/filter | |
76 if numel(mobjs.objs)>1 | |
77 error(['### Filter matrix has more than one object. '... | |
78 'This seems to be a N-dimensional filtering problem that has to be solved with matrix/filter. '... | |
79 'Type help matrix/filter for more information ###']); | |
80 end | |
81 if isa(fobjs,'filterbank') % in case of filterbanks | |
82 pl.pset('bank', fobjs.type); | |
83 fobjs = fobjs.filters; | |
84 end | |
85 end | |
86 | |
87 if isempty(fobjs) | |
88 fobjs = find(pl, 'filter'); | |
89 % check if we have filterbank or matrix | |
90 if isa(fobjs,'filterbank') % in case of filterbank | |
91 pl.pset('bank', fobjs.type); | |
92 fobjs = fobjs.filters; | |
93 elseif isa(fobjs,'matrix') % in case of matrix | |
94 fobjs = fobjs.objs; | |
95 % check we do not have more than one object into the matrix, if this is | |
96 % the case the problem is considered a N-dimensional filtering problem | |
97 % that can be solved by matrix/filter | |
98 if numel(fobjs)>1 | |
99 error(['### Filter matrix has more than one object. '... | |
100 'This seems to be a N-dimensional filtering problem that has to be solved with matrix/filter. '... | |
101 'Type help matrix/filter for more information ###']); | |
102 end | |
103 if isa(fobjs,'filterbank') % in case of filterbanks | |
104 pl.pset('bank', fobjs.type); | |
105 fobjs = fobjs.filters; | |
106 end | |
107 end | |
108 end | |
109 | |
110 | |
111 % decide to initialize or not | |
112 init = utils.prog.yes2true(find(pl, 'initialize')); | |
113 | |
114 % check inputs | |
115 if ~isa(fobjs, 'miir') && ~isa(fobjs, 'mfir') | |
116 error('### the filter input should be an miir/mfir object.'); | |
117 end | |
118 | |
119 if numel(bs) > 1 && nargout > 1 | |
120 error('### It is only possible to output a bank of filters when applied to a single AO.'); | |
121 end | |
122 | |
123 for j=1:numel(bs) | |
124 | |
125 % Copy filter so we can change it | |
126 fobjs_copy = copy(fobjs, 1); | |
127 % keep the history to suppress the history of the intermediate steps | |
128 inhist = bs(j).hist; | |
129 | |
130 if isa(bs(j).data, 'tsdata') | |
131 %------------------------------------------------------------------------ | |
132 %------------------------ Time-series filter ------------------------ | |
133 %------------------------------------------------------------------------ | |
134 % get input data | |
135 if isa(fobjs_copy, 'mfir') | |
136 % apply filter | |
137 utils.helper.msg(msg.PROC1, 'filtering with FIR filter'); | |
138 [bs(j).data.y, Zf] = filter(fobjs_copy.a, 1, bs(j).data.y, fobjs_copy.histout); | |
139 % remove group delay | |
140 if strcmpi(find(pl, 'gdoff'), 'no') | |
141 gd = floor(fobjs_copy.gd); | |
142 bs(j).data.setXY(bs(j).data.getX(1:end-gd),bs(j).data.getY(1+gd:end)); | |
143 bs(j).data.collapseX; | |
144 end | |
145 % set units of the output data as we go | |
146 bs(j).data.setYunits(bs(j).data.yunits.*fobjs_copy.ounits./fobjs_copy.iunits); | |
147 | |
148 else %if isa(fobjs_copy, 'miir') | |
149 utils.helper.msg(msg.PROC1, 'filtering with IIR filter'); | |
150 % initialise data vector | |
151 bank = find(pl, 'bank'); | |
152 switch lower(bank) | |
153 case 'parallel' | |
154 y = zeros(size(bs(j).data.getY)); | |
155 case 'serial' | |
156 y = ones(size(bs(j).data.getY)); | |
157 otherwise | |
158 error('### Unknown filter bank option. Choose ''serial'' or ''parallel''.'); | |
159 end | |
160 % Loop over filters | |
161 iu = fobjs_copy(1).iunits; | |
162 ou = fobjs_copy(1).ounits; | |
163 for ff = 1:numel(fobjs_copy) | |
164 | |
165 % check sample rate | |
166 if bs(j).data.fs ~= fobjs_copy(ff).fs | |
167 warning('!!! Filter is designed for a different sample rate of data.'); | |
168 % Adjust/redesign if this is a standard filter | |
169 fobjs_copy(ff) = fobjs_copy(ff).redesign(bs(j).data.fs); | |
170 end | |
171 | |
172 % Choose filtering type | |
173 switch lower(bank) | |
174 | |
175 case 'parallel' | |
176 % check units | |
177 if iu ~= fobjs_copy(ff).iunits | |
178 error('### Input units of each filter must match for a parallel filter bank.'); | |
179 end | |
180 if ou ~= fobjs_copy(ff).ounits | |
181 error('### Output units of each filter must match for a parallel filter bank.'); | |
182 end | |
183 % Initialise the state to avoid transients if necessary and | |
184 % explicitely required | |
185 if ((~any(fobjs_copy(ff).histout) || isempty(fobjs_copy(ff).histout)) && init) | |
186 zi = utils.math.iirinit(fobjs_copy(ff).a,fobjs_copy(ff).b); | |
187 % setting new histout | |
188 fobjs_copy(ff).setHistout(zi*bs(j).data.y(1)); | |
189 end | |
190 % filter data | |
191 [yf, Zf] = filter(fobjs_copy(ff).a, fobjs_copy(ff).b, bs(j).data.y, fobjs_copy(ff).histout); | |
192 if ~isequal(size(yf),size(y)) | |
193 yf = yf.'; | |
194 end | |
195 y = y + yf; | |
196 | |
197 case 'serial' | |
198 if ff == 1 | |
199 y = bs(j).data.y; | |
200 end | |
201 % Initialise the state to avoid transients if necessary | |
202 if ~any(fobjs_copy(ff).histout) || isempty(fobjs_copy(ff).histout) | |
203 zi = utils.math.iirinit(fobjs_copy(ff).a,fobjs_copy(ff).b); | |
204 % setting new histout | |
205 fobjs_copy(ff).setHistout(zi*y(1)); | |
206 end | |
207 % filter data | |
208 [yf, Zf] = filter(fobjs_copy(ff).a, fobjs_copy(ff).b, y, fobjs_copy(ff).histout); | |
209 if ~isequal(size(yf),size(y)) | |
210 y = yf.'; | |
211 else | |
212 y = yf; | |
213 end | |
214 % set units of the output data as we go | |
215 bs(j).data.setYunits(bs(j).data.yunits.*fobjs_copy(ff).ounits./fobjs_copy(ff).iunits); | |
216 otherwise | |
217 error('### Unknown filter bank option. Choose ''serial'' or ''parallel''.'); | |
218 end | |
219 % set filter output history | |
220 fobjs_copy(ff).setHistout(Zf); | |
221 end % End loop over filters | |
222 | |
223 % set output data | |
224 bs(j).data.setY(y); | |
225 % clear errors | |
226 bs(j).clearErrors; | |
227 | |
228 % if this was a parallel filter bank, we should set the units now | |
229 if strcmpi(bank, 'parallel') | |
230 % set units of the output data | |
231 bs(j).data.setYunits(bs(j).data.yunits.*fobjs_copy(1).ounits./fobjs_copy(1).iunits); | |
232 bs(j).data.yunits.simplify; | |
233 end | |
234 | |
235 end % End filter type | |
236 | |
237 elseif isa(bs(j).data, 'fsdata') | |
238 %------------------------------------------------------------------------ | |
239 %---------------------- Frequency-series filter --------------------- | |
240 %------------------------------------------------------------------------ | |
241 | |
242 utils.helper.msg(msg.PROC1, 'filtering with %s filter', upper(class(fobjs_copy))); | |
243 | |
244 % apply filter | |
245 if numel(fobjs_copy)==1 | |
246 bs(j) = bs(j).*resp(fobjs_copy, plist('f', bs(j).x)); | |
247 else | |
248 bank = find(pl, 'bank'); | |
249 iu = fobjs_copy(1).iunits; | |
250 ou = fobjs_copy(1).ounits; | |
251 switch lower(bank) | |
252 case 'parallel' | |
253 sfr = resp(fobjs_copy, plist('f', bs(j).x)); | |
254 fr = sfr(1); | |
255 for jj = 2:numel(fobjs_copy) | |
256 if iu ~= fobjs_copy(jj).iunits | |
257 error('### Input units of each filter must match for a parallel filter bank.'); | |
258 end | |
259 if ou ~= fobjs_copy(jj).ounits | |
260 error('### Output units of each filter must match for a parallel filter bank.'); | |
261 end | |
262 fr = fr + sfr(jj); | |
263 end | |
264 bs(j) = bs(j).*fr; | |
265 case 'serial' | |
266 sfr = resp(fobjs_copy, plist('f', bs(j).x)); | |
267 fr = sfr(1); | |
268 for jj = 2:numel(fobjs_copy) | |
269 fr = fr.*sfr(jj); | |
270 end | |
271 bs(j) = bs(j).*fr; | |
272 end | |
273 end | |
274 | |
275 else | |
276 error('### unknown data type.'); | |
277 end | |
278 | |
279 % name for this object | |
280 bs(j).name = sprintf('%s(%s)', fobjs_copy.name, ao_invars{j}); | |
281 % Collect the filters into procinfo | |
282 bs(j).procinfo = plist('filter', fobjs_copy); | |
283 % add history | |
284 bs(j).addHistory(getInfo('None'), pl, ao_invars(j), [inhist fobjs_copy(:).hist]); | |
285 end | |
286 | |
287 % Set outputs | |
288 if nargout == 1 | |
289 varargout{1} = bs; | |
290 elseif nargout == 2 | |
291 varargout{1} = bs; | |
292 varargout{2} = fobjs_copy; | |
293 elseif nargout > 2 | |
294 error('### wrong number of output arguments.'); | |
295 end | |
296 end | |
297 | |
298 %-------------------------------------------------------------------------- | |
299 % Get Info Object | |
300 %-------------------------------------------------------------------------- | |
301 function ii = getInfo(varargin) | |
302 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
303 sets = {}; | |
304 pls = []; | |
305 else | |
306 sets = {'Default'}; | |
307 pls = getDefaultPlist; | |
308 end | |
309 % Build info object | |
310 ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: filter.m,v 1.86 2011/04/08 08:56:14 hewitson Exp $', sets, pls); | |
311 end | |
312 | |
313 %-------------------------------------------------------------------------- | |
314 % Get Default Plist | |
315 %-------------------------------------------------------------------------- | |
316 function plout = getDefaultPlist() | |
317 persistent pl; | |
318 if exist('pl', 'var')==0 || isempty(pl) | |
319 pl = buildplist(); | |
320 end | |
321 plout = pl; | |
322 end | |
323 | |
324 function pl = buildplist() | |
325 | |
326 pl = plist(); | |
327 | |
328 % Filter | |
329 p = param({'filter', 'The filter(s) to apply to the data.'}, paramValue.EMPTY_STRING); | |
330 pl.append(p); | |
331 | |
332 % GDoff | |
333 p = param({'GDOFF', 'Switch off correction for group delay.'}, paramValue.YES_NO); | |
334 p.val.setValIndex(2); | |
335 pl.append(p); | |
336 | |
337 % Bank | |
338 p = param({'bank', 'Specify what type of filter bank is being applied.'}, {1, {'parallel', 'serial'}, paramValue.SINGLE}); | |
339 pl.append(p); | |
340 | |
341 % Initialize | |
342 p = param({'initialize', 'Initialize the filter to avoid startup transients.'}, {1, {false, true}, paramValue.SINGLE}); | |
343 pl.append(p); | |
344 | |
345 end | |
346 | |
347 % PARAMETERS: filter - the filter object to use to filter the data | |
348 % bank - For IIR filtering, specify if the bank of filters | |
349 % is intended to be 'serial' or 'parallel' [default] | |
350 % initialize - true or false if you want the filter being | |
351 % automatically initialized or not. |