Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/filter.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/filter.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,351 @@ +% FILTER overrides the filter function for analysis objects. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: FILTER overrides the filter function for analysis objects. +% Applies the input digital IIR/FIR filter to the input analysis +% object. If the input analysis object contains a +% time-series (tsdata) then the filter is applied using the normal +% recursion algorithm. The output analysis object contains a tsdata +% object. +% +% If the input analysis object contains a frequency-series (fsdata) +% then the response of the filter is computed and then multiplied +% with the input frequency series. The output analysis object +% contains a frequency series. +% +% CALL: >> [b, filt] = filter(a,pl) +% >> [b, filt] = filter(a,filt,pl) +% >> b = filter(a,pl) +% +% INPUTS: pl - a parameter list +% a - input analysis object +% +% OUTPUTS: filt - a copy of the input filter object with the +% history values filled in. +% (only possible if the ouput is a single AO) +% b - output analysis object containing the filtered data. +% +% PROCINFO: The input filter object with the history values filled in are +% always stored with a plist in the 'procinfo' property of the AO. +% The key of the plist to get the filter is 'Filter'. +% +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'filter')">Parameters Description</a> +% +% VERSION: $Id: filter.m,v 1.86 2011/04/08 08:56:14 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = filter(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); + [fobjs, f_invars] = utils.helper.collect_objects(varargin(:), 'ltpda_filter', in_names); + [fbobjs, fb_invars] = utils.helper.collect_objects(varargin(:), 'filterbank', in_names); + [mobjs, m_invars] = utils.helper.collect_objects(varargin(:), 'matrix', in_names); + + % Make copies or handles to inputs + bs = copy(as, nargout); + + % combine plists + pl = parse(pl, getDefaultPlist()); + + % Filter with a filterbank object or a matrix + if ~isempty(fbobjs) + fobjs = fbobjs.filters; + pl.pset('bank', fbobjs.type); + elseif ~isempty(mobjs) + fobjs = mobjs.objs; + % check we do not have more than one object into the matrix, if this is + % the case the problem is considered a N-dimensional filtering problem + % that can be solved by matrix/filter + if numel(mobjs.objs)>1 + error(['### Filter matrix has more than one object. '... + 'This seems to be a N-dimensional filtering problem that has to be solved with matrix/filter. '... + 'Type help matrix/filter for more information ###']); + end + if isa(fobjs,'filterbank') % in case of filterbanks + pl.pset('bank', fobjs.type); + fobjs = fobjs.filters; + end + end + + if isempty(fobjs) + fobjs = find(pl, 'filter'); + % check if we have filterbank or matrix + if isa(fobjs,'filterbank') % in case of filterbank + pl.pset('bank', fobjs.type); + fobjs = fobjs.filters; + elseif isa(fobjs,'matrix') % in case of matrix + fobjs = fobjs.objs; + % check we do not have more than one object into the matrix, if this is + % the case the problem is considered a N-dimensional filtering problem + % that can be solved by matrix/filter + if numel(fobjs)>1 + error(['### Filter matrix has more than one object. '... + 'This seems to be a N-dimensional filtering problem that has to be solved with matrix/filter. '... + 'Type help matrix/filter for more information ###']); + end + if isa(fobjs,'filterbank') % in case of filterbanks + pl.pset('bank', fobjs.type); + fobjs = fobjs.filters; + end + end + end + + + % decide to initialize or not + init = utils.prog.yes2true(find(pl, 'initialize')); + + % check inputs + if ~isa(fobjs, 'miir') && ~isa(fobjs, 'mfir') + error('### the filter input should be an miir/mfir object.'); + end + + if numel(bs) > 1 && nargout > 1 + error('### It is only possible to output a bank of filters when applied to a single AO.'); + end + + for j=1:numel(bs) + + % Copy filter so we can change it + fobjs_copy = copy(fobjs, 1); + % keep the history to suppress the history of the intermediate steps + inhist = bs(j).hist; + + if isa(bs(j).data, 'tsdata') + %------------------------------------------------------------------------ + %------------------------ Time-series filter ------------------------ + %------------------------------------------------------------------------ + % get input data + if isa(fobjs_copy, 'mfir') + % apply filter + utils.helper.msg(msg.PROC1, 'filtering with FIR filter'); + [bs(j).data.y, Zf] = filter(fobjs_copy.a, 1, bs(j).data.y, fobjs_copy.histout); + % remove group delay + if strcmpi(find(pl, 'gdoff'), 'no') + gd = floor(fobjs_copy.gd); + bs(j).data.setXY(bs(j).data.getX(1:end-gd),bs(j).data.getY(1+gd:end)); + bs(j).data.collapseX; + end + % set units of the output data as we go + bs(j).data.setYunits(bs(j).data.yunits.*fobjs_copy.ounits./fobjs_copy.iunits); + + else %if isa(fobjs_copy, 'miir') + utils.helper.msg(msg.PROC1, 'filtering with IIR filter'); + % initialise data vector + bank = find(pl, 'bank'); + switch lower(bank) + case 'parallel' + y = zeros(size(bs(j).data.getY)); + case 'serial' + y = ones(size(bs(j).data.getY)); + otherwise + error('### Unknown filter bank option. Choose ''serial'' or ''parallel''.'); + end + % Loop over filters + iu = fobjs_copy(1).iunits; + ou = fobjs_copy(1).ounits; + for ff = 1:numel(fobjs_copy) + + % check sample rate + if bs(j).data.fs ~= fobjs_copy(ff).fs + warning('!!! Filter is designed for a different sample rate of data.'); + % Adjust/redesign if this is a standard filter + fobjs_copy(ff) = fobjs_copy(ff).redesign(bs(j).data.fs); + end + + % Choose filtering type + switch lower(bank) + + case 'parallel' + % check units + if iu ~= fobjs_copy(ff).iunits + error('### Input units of each filter must match for a parallel filter bank.'); + end + if ou ~= fobjs_copy(ff).ounits + error('### Output units of each filter must match for a parallel filter bank.'); + end + % Initialise the state to avoid transients if necessary and + % explicitely required + if ((~any(fobjs_copy(ff).histout) || isempty(fobjs_copy(ff).histout)) && init) + zi = utils.math.iirinit(fobjs_copy(ff).a,fobjs_copy(ff).b); + % setting new histout + fobjs_copy(ff).setHistout(zi*bs(j).data.y(1)); + end + % filter data + [yf, Zf] = filter(fobjs_copy(ff).a, fobjs_copy(ff).b, bs(j).data.y, fobjs_copy(ff).histout); + if ~isequal(size(yf),size(y)) + yf = yf.'; + end + y = y + yf; + + case 'serial' + if ff == 1 + y = bs(j).data.y; + end + % Initialise the state to avoid transients if necessary + if ~any(fobjs_copy(ff).histout) || isempty(fobjs_copy(ff).histout) + zi = utils.math.iirinit(fobjs_copy(ff).a,fobjs_copy(ff).b); + % setting new histout + fobjs_copy(ff).setHistout(zi*y(1)); + end + % filter data + [yf, Zf] = filter(fobjs_copy(ff).a, fobjs_copy(ff).b, y, fobjs_copy(ff).histout); + if ~isequal(size(yf),size(y)) + y = yf.'; + else + y = yf; + end + % set units of the output data as we go + bs(j).data.setYunits(bs(j).data.yunits.*fobjs_copy(ff).ounits./fobjs_copy(ff).iunits); + otherwise + error('### Unknown filter bank option. Choose ''serial'' or ''parallel''.'); + end + % set filter output history + fobjs_copy(ff).setHistout(Zf); + end % End loop over filters + + % set output data + bs(j).data.setY(y); + % clear errors + bs(j).clearErrors; + + % if this was a parallel filter bank, we should set the units now + if strcmpi(bank, 'parallel') + % set units of the output data + bs(j).data.setYunits(bs(j).data.yunits.*fobjs_copy(1).ounits./fobjs_copy(1).iunits); + bs(j).data.yunits.simplify; + end + + end % End filter type + + elseif isa(bs(j).data, 'fsdata') + %------------------------------------------------------------------------ + %---------------------- Frequency-series filter --------------------- + %------------------------------------------------------------------------ + + utils.helper.msg(msg.PROC1, 'filtering with %s filter', upper(class(fobjs_copy))); + + % apply filter + if numel(fobjs_copy)==1 + bs(j) = bs(j).*resp(fobjs_copy, plist('f', bs(j).x)); + else + bank = find(pl, 'bank'); + iu = fobjs_copy(1).iunits; + ou = fobjs_copy(1).ounits; + switch lower(bank) + case 'parallel' + sfr = resp(fobjs_copy, plist('f', bs(j).x)); + fr = sfr(1); + for jj = 2:numel(fobjs_copy) + if iu ~= fobjs_copy(jj).iunits + error('### Input units of each filter must match for a parallel filter bank.'); + end + if ou ~= fobjs_copy(jj).ounits + error('### Output units of each filter must match for a parallel filter bank.'); + end + fr = fr + sfr(jj); + end + bs(j) = bs(j).*fr; + case 'serial' + sfr = resp(fobjs_copy, plist('f', bs(j).x)); + fr = sfr(1); + for jj = 2:numel(fobjs_copy) + fr = fr.*sfr(jj); + end + bs(j) = bs(j).*fr; + end + end + + else + error('### unknown data type.'); + end + + % name for this object + bs(j).name = sprintf('%s(%s)', fobjs_copy.name, ao_invars{j}); + % Collect the filters into procinfo + bs(j).procinfo = plist('filter', fobjs_copy); + % add history + bs(j).addHistory(getInfo('None'), pl, ao_invars(j), [inhist fobjs_copy(:).hist]); + end + + % Set outputs + if nargout == 1 + varargout{1} = bs; + elseif nargout == 2 + varargout{1} = bs; + varargout{2} = fobjs_copy; + elseif nargout > 2 + error('### wrong number of output arguments.'); + end +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pls = []; + else + sets = {'Default'}; + pls = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: filter.m,v 1.86 2011/04/08 08:56:14 hewitson Exp $', sets, pls); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + + pl = plist(); + + % Filter + p = param({'filter', 'The filter(s) to apply to the data.'}, paramValue.EMPTY_STRING); + pl.append(p); + + % GDoff + p = param({'GDOFF', 'Switch off correction for group delay.'}, paramValue.YES_NO); + p.val.setValIndex(2); + pl.append(p); + + % Bank + p = param({'bank', 'Specify what type of filter bank is being applied.'}, {1, {'parallel', 'serial'}, paramValue.SINGLE}); + pl.append(p); + + % Initialize + p = param({'initialize', 'Initialize the filter to avoid startup transients.'}, {1, {false, true}, paramValue.SINGLE}); + pl.append(p); + +end + +% PARAMETERS: filter - the filter object to use to filter the data +% bank - For IIR filtering, specify if the bank of filters +% is intended to be 'serial' or 'parallel' [default] +% initialize - true or false if you want the filter being +% automatically initialized or not.